langchain-google-vertexai¶
注意
此软件包参考尚未完全迁移到 v1。
langchain_google_vertexai ¶
LangChain Google 生成式 AI 集成.
此模块包含 LangChain 与 Vertex AI 服务的集成——包括 Google 基础模型、Vertex Model Garden 上可用的第三方基础模型。
支持的集成
- Google 基础模型:
Gemini系列、Codey、embeddings -ChatVertexAI、VertexAI、VertexAIEmbeddings。 - 其他 Google 基础模型:Imagen -
VertexAIImageCaptioning、VertexAIImageCaptioningChat、VertexAIImageEditorChat、VertexAIImageGeneratorChat、VertexAIVisualQnAChat。 - Vertex Model Garden 上作为 API (model-as-a-service) 提供的第三方基础模型(Mistral、Llama、Anthropic)-
model_garden.ChatAnthropicVertex、model_garden_maas.VertexModelGardenLlama、model_garden_maas.VertexModelGardenMistral。 - 从 Vertex Model Garden 或 Huggingface 部署在 Vertex AI 端点上的第三方基础模型 -
VertexAIModelGarden。 - 在 Vertex AI 端点或本地部署的 Gemma -
GemmaChatLocalHF、GemmaChatLocalKaggle、GemmaChatVertexAIModelGarden、GemmaLocalHF、GemmaLocalKaggle、GemmaVertexAIModelGarden。 - Vertex AI 上的 Vector Search -
VectorSearchVectorStore、VectorSearchVectorStoreDatastore、VectorSearchVectorStoreGCS。 - 用于生成式 AI 的 Vertex AI 评估器 -
VertexPairWiseStringEvaluator、VertexStringEvaluator。
请查看每个类的详细文档以获取更多信息。
安装
.. code-block:: bash pip install langchain-google-vertexai
您需要启用所需的 Google Cloud API(取决于您使用的集成)并通过以下方式之一设置凭据:- 为您的环境配置凭据(gcloud、工作负载身份等)- 将服务帐户 JSON 文件的路径存储为 GOOGLE_APPLICATION_CREDENTIALS 环境变量
此代码库使用 google.auth 库,该库首先查找上述应用程序凭据变量,然后查找系统级身份验证。
更多信息
凭据类型 <https://cloud.google.com/docs/authentication/application-default-credentials#GAC>__google.authAPI 参考 <https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth>__
| 函数 | 描述 |
|---|---|
create_structured_runnable |
创建一个使用 OpenAI 函数的可运行序列。 |
get_vertex_maas_model |
返回一个相应的 Vertex MaaS 实例。 |
create_context_cache |
为某个模型中的内容创建一个缓存。 |
ChatVertexAI ¶
基类:_VertexAICommon, BaseChatModel
Google Cloud Vertex AI 聊天模型集成。
设置
您必须满足以下任一条件:- 为您的环境配置凭据(gcloud、工作负载身份等)- 将服务帐户 JSON 文件的路径存储为 GOOGLE_APPLICATION_CREDENTIALS 环境变量
此代码库使用 google.auth 库,该库首先查找上述应用程序凭据变量,然后查找系统级身份验证。
更多信息
凭据类型 <https://cloud.google.com/docs/authentication/application-default-credentials#GAC>__google.authAPI 参考 <https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth>__
关键初始化参数 — 完成参数:model: str 要使用的 ChatVertexAI 模型名称。例如 'gemini-2.0-flash-001', 'gemini-2.5-pro', 等。temperature: Optional[float] 采样温度。seed: Optional[int] 要使用的采样整数。max_tokens: Optional[int] 生成的最大 token 数。stop: Optional[List[str]] 默认停止序列。safety_settings: Optional[Dict[vertexai.generative_models.HarmCategory, vertexai.generative_models.HarmBlockThreshold]] 用于所有生成的默认安全设置。
关键初始化参数 — 客户端参数:max_retries: int 最大重试次数。wait_exponential_kwargs: Optional[dict[str, float]] 带有 wait_exponential 参数的可选字典:- multiplier: 初始等待时间乘数(默认为 1.0)- min: 最小等待时间(秒)(默认为 4.0)- max: 最大等待时间(秒)(默认为 10.0)- exp_base: 要使用的指数基数(默认为 2.0)credentials: Optional[google.auth.credentials.Credentials] 进行 API 调用时使用的默认自定义凭据。如果未提供,将从环境中获取凭据。project: Optional[str] 进行 Vertex API 调用时使用的默认 GCP 项目。location: str = "us-central1" 进行 API 调用时使用的默认位置。request_parallelism: int = 5 允许向 VertexAI 模型发出的请求的并行度。(默认为 5)base_url: Optional[str] API 请求的基础 URL。
有关支持的初始化参数及其描述的完整列表,请参见参数部分。
实例化
.. code-block:: python
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(
model="gemini-1.5-flash-001",
temperature=0,
max_tokens=None,
max_retries=6,
stop=None,
# other params...
)
调用
.. code-block:: python
messages = [
(
"system",
"You are a helpful translator. Translate the user sentence to French.",
),
("human", "I love programming."),
]
llm.invoke(messages)
.. code-block:: python
AIMessage(
content="J'adore programmer. ",
response_metadata={
"is_blocked": False,
"safety_ratings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
],
"citation_metadata": None,
"usage_metadata": {
"prompt_token_count": 17,
"candidates_token_count": 7,
"total_token_count": 24,
},
},
id="run-925ce305-2268-44c4-875f-dde9128520ad-0",
)
流
.. code-block:: python
for chunk in llm.stream(messages):
print(chunk)
.. code-block:: python
AIMessageChunk(
content="J",
response_metadata={
"is_blocked": False,
"safety_ratings": [],
"citation_metadata": None,
},
id="run-9df01d73-84d9-42db-9d6b-b1466a019e89",
)
AIMessageChunk(
content="'adore programmer. ",
response_metadata={
"is_blocked": False,
"safety_ratings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
],
"citation_metadata": None,
},
id="run-9df01d73-84d9-42db-9d6b-b1466a019e89",
)
AIMessageChunk(
content="",
response_metadata={
"is_blocked": False,
"safety_ratings": [],
"citation_metadata": None,
"usage_metadata": {
"prompt_token_count": 17,
"candidates_token_count": 7,
"total_token_count": 24,
},
},
id="run-9df01d73-84d9-42db-9d6b-b1466a019e89",
)
.. code-block:: python
stream = llm.stream(messages)
full = next(stream)
for chunk in stream:
full += chunk
full
.. code-block:: python
AIMessageChunk(
content="J'adore programmer. ",
response_metadata={
"is_blocked": False,
"safety_ratings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
],
"citation_metadata": None,
"usage_metadata": {
"prompt_token_count": 17,
"candidates_token_count": 7,
"total_token_count": 24,
},
},
id="run-b7f7492c-4cb5-42d0-8fc3-dce9b293b0fb",
)
异步
.. code-block:: python
await llm.ainvoke(messages)
# stream:
# async for chunk in (await llm.astream(messages))
# batch:
# await llm.abatch([messages])
.. code-block:: python
AIMessage(
content="J'adore programmer. ",
response_metadata={
"is_blocked": False,
"safety_ratings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
],
"citation_metadata": None,
"usage_metadata": {
"prompt_token_count": 17,
"candidates_token_count": 7,
"total_token_count": 24,
},
},
id="run-925ce305-2268-44c4-875f-dde9128520ad-0",
)
上下文缓存
上下文缓存允许您存储和重用内容(例如 PDF、图像)以加快处理速度。cached_content 参数接受通过 Google Generative AI API 与 Vertex AI 创建的缓存名称。以下是从 GCS 缓存内容并查询它的示例。
示例
这将缓存 GCS 中的内容并进行查询。
.. code-block:: python
from google import genai
from google.genai.types import (
Content,
CreateCachedContentConfig,
HttpOptions,
Part,
)
from langchain_google_vertexai import ChatVertexAI
from langchain_core.messages import HumanMessage
client = genai.Client(http_options=HttpOptions(api_version="v1beta1"))
contents = [
Content(
role="user",
parts=[
Part.from_uri(
file_uri="gs://your-bucket/file1",
mime_type="application/pdf",
),
Part.from_uri(
file_uri="gs://your-bucket/file2",
mime_type="image/jpeg",
),
],
)
]
cache = client.caches.create(
model="gemini-1.5-flash-001",
config=CreateCachedContentConfig(
contents=contents,
system_instruction="You are an expert content analyzer.",
display_name="content-cache",
ttl="300s",
),
)
llm = ChatVertexAI(
model_name="gemini-1.5-flash-001",
cached_content=cache.name,
)
message = HumanMessage(
content="Provide a summary of the key information across the content."
)
llm.invoke([message])
工具调用
.. code-block:: python
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
)
ai_msg.tool_calls
.. code-block:: python
[
{
"name": "GetWeather",
"args": {"location": "Los Angeles, CA"},
"id": "2a2401fa-40db-470d-83ce-4e52de910d9e",
},
{
"name": "GetWeather",
"args": {"location": "New York City, NY"},
"id": "96761deb-ab7f-4ef9-b4b4-6d44562fc46e",
},
{
"name": "GetPopulation",
"args": {"location": "Los Angeles, CA"},
"id": "9147d532-abee-43a2-adb5-12f164300484",
},
{
"name": "GetPopulation",
"args": {"location": "New York City, NY"},
"id": "c43374ea-bde5-49ca-8487-5b83ebeea1e6",
},
]
更多信息请参见 ChatVertexAI.bind_tools() 方法。
内置搜索
.. code-block:: python
from google.cloud.aiplatform_v1beta1.types import Tool as VertexTool
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-2.0-flash-exp")
resp = llm.invoke(
"When is the next total solar eclipse in US?",
tools=[VertexTool(google_search={})],
)
内置代码执行
.. code-block:: python
from google.cloud.aiplatform_v1beta1.types import Tool as VertexTool
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-2.0-flash-exp")
resp = llm.invoke(
"What is 3^3?",
tools=[VertexTool(code_execution={})],
)
结构化输出
.. code-block:: python
from typing import Optional
from pydantic import BaseModel, Field
class Joke(BaseModel):
'''Joke to tell user.'''
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
rating: Optional[int] = Field(
default=None, description="How funny the joke is, from 1 to 10"
)
structured_llm = llm.with_structured_output(Joke)
structured_llm.invoke("Tell me a joke about cats")
.. code-block:: python
Joke(
setup="What do you call a cat that loves to bowl?",
punchline="An alley cat!",
rating=None,
)
更多信息请参见 ChatVertexAI.with_structured_output()。
图像输入
.. code-block:: python
import base64
import httpx
from langchain_core.messages import HumanMessage
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
"The weather in this image appears to be sunny and pleasant. The sky is a bright blue with scattered white clouds, suggesting a clear and mild day. The lush green grass indicates recent rainfall or sufficient moisture. The absence of strong shadows suggests that the sun is high in the sky, possibly late afternoon. Overall, the image conveys a sense of tranquility and warmth, characteristic of a beautiful summer day."
您也可以指向 GCS 文件,这样更快/更高效,因为字节是在来回传输。
.. code-block:: python
llm.invoke(
[
HumanMessage(
[
"What's in the image?",
{
"type": "media",
"file_uri": "gs://cloud-samples-data/generative-ai/image/scones.jpg",
"mime_type": "image/jpeg",
},
]
)
]
).content
.. code-block:: python
'The image is of five blueberry scones arranged on a piece of baking paper. Here is a list of what is in the picture:* **Five blueberry scones:** They are scattered across the parchment paper, dusted with powdered sugar. * **Two cups of coffee:** Two white cups with saucers. One appears full, the other partially drunk. * **A bowl of blueberries:** A brown bowl is filled with fresh blueberries, placed near the scones.* **A spoon:** A silver spoon with the words "Let\'s Jam" rests on the paper.* **Pink peonies:** Several pink peonies lie beside the scones, adding a touch of color.* **Baking paper:** The scones, cups, bowl, and spoon are arranged on a piece of white baking paper, splattered with purple. The paper is crinkled and sits on a dark surface. The image has a rustic and delicious feel, suggesting a cozy and enjoyable breakfast or brunch setting.'
PDF 输入
.. code-block:: python
import base64
from langchain_core.messages import HumanMessage
pdf_bytes = open("/path/to/your/test.pdf", "rb").read()
pdf_base64 = base64.b64encode(pdf_bytes).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "describe the document in a sentence"},
{
"type": "file",
"mime_type": "application/pdf",
"base64": pdf_base64,
},
]
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
"This research paper describes a system developed for SemEval-2025 Task 9, which aims to automate the detection of food hazards from recall reports, addressing the class imbalance problem by leveraging LLM-based data augmentation techniques and transformer-based models to improve performance."
您也可以指向 GCS 文件。
.. code-block:: python
llm.invoke(
[
HumanMessage(
[
"describe the document in a sentence",
{
"type": "media",
"file_uri": "gs://cloud-samples-data/generative-ai/pdf/1706.03762v7.pdf",
"mime_type": "application/pdf",
},
]
)
]
).content
.. code-block:: python
"The article introduces Transformer, a new model architecture for sequence transduction based solely on attention mechanisms, outperforming previous models in machine translation tasks and demonstrating good generalization to English constituency parsing."
视频输入
.. code-block:: python
import base64
from langchain_core.messages import HumanMessage
video_bytes = open("/path/to/your/video.mp4", "rb").read()
video_base64 = base64.b64encode(video_bytes).decode("utf-8")
message = HumanMessage(
content=[
{
"type": "text",
"text": "describe what's in this video in a sentence",
},
{
"type": "file",
"mime_type": "video/mp4",
"base64": video_base64,
},
]
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
"Tom and Jerry, along with a turkey, engage in a chaotic Thanksgiving-themed adventure involving a corn-on-the-cob chase, maze antics, and a disastrous attempt to prepare a turkey dinner."
您也可以直接传递 YouTube URL
.. code-block:: python
from langchain_core.messages import HumanMessage
message = HumanMessage(
content=[
{"type": "text", "text": "summarize the video in 3 sentences."},
{
"type": "media",
"file_uri": "https://www.youtube.com/watch?v=9hE5-98ZeCg",
"mime_type": "video/mp4",
},
]
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
"The video is a demo of multimodal live streaming in Gemini 2.0. The narrator is sharing his screen in AI Studio and asks if the AI can see it. The AI then reads text that is highlighted on the screen, defines the word “multimodal,” and summarizes everything that was seen and heard."
您也可以指向 GCS 文件。
.. code-block:: python
llm = ChatVertexAI(model="gemini-1.0-pro-vision")
llm.invoke(
[
HumanMessage(
[
"What's in the video?",
{
"type": "media",
"file_uri": "gs://cloud-samples-data/video/animals.mp4",
"mime_type": "video/mp4",
},
]
)
]
).content
.. code-block:: python
'The video is about a new feature in Google Photos called "Zoomable Selfies". The feature allows users to take selfies with animals at the zoo. The video shows several examples of people taking selfies with animals, including a tiger, an elephant, and a sea otter. The video also shows how the feature works. Users simply need to open the Google Photos app and select the "Zoomable Selfies" option. Then, they need to choose an animal from the list of available animals. The app will then guide the user through the process of taking the selfie.'
音频输入
.. code-block:: python
import base64
from langchain_core.messages import HumanMessage
audio_bytes = open("/path/to/your/audio.mp3", "rb").read()
audio_base64 = base64.b64encode(audio_bytes).decode("utf-8")
message = HumanMessage(
content=[
{"type": "text", "text": "summarize this audio in a sentence"},
{
"type": "file",
"mime_type": "audio/mp3",
"base64": audio_base64,
},
]
)
ai_msg = llm.invoke([message])
ai_msg.content
.. code-block:: python
"In this episode of the Made by Google podcast, Stephen Johnson and Simon Tokumine discuss NotebookLM, a tool designed to help users understand complex material in various modalities, with a focus on its unexpected uses, the development of audio overviews, and the implementation of new features like mind maps and source discovery."
您也可以指向 GCS 文件。
.. code-block:: python
from langchain_core.messages import HumanMessage
llm = ChatVertexAI(model="gemini-1.5-flash-001")
llm.invoke(
[
HumanMessage(
[
"What's this audio about?",
{
"type": "media",
"file_uri": "gs://cloud-samples-data/generative-ai/audio/pixel.mp3",
"mime_type": "audio/mpeg",
},
]
)
]
).content
.. code-block:: python
"This audio is an interview with two product managers from Google who work on Pixel feature drops. They discuss how feature drops are important for showcasing how Google devices are constantly improving and getting better. They also discuss some of the highlights of the January feature drop and the new features coming in the March drop for Pixel phones and Pixel watches. The interview concludes with discussion of how user feedback is extremely important to them in deciding which features to include in the feature drops."
令牌使用情况
.. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.usage_metadata
.. code-block:: python
{"input_tokens": 17, "output_tokens": 7, "total_tokens": 24}
Logprobs
.. code-block:: python
llm = ChatVertexAI(model="gemini-1.5-flash-001", logprobs=True)
ai_msg = llm.invoke(messages)
ai_msg.response_metadata["logprobs_result"]
.. code-block:: python
[
{"token": "J", "logprob": -1.549651415189146e-06, "top_logprobs": []},
{"token": "'", "logprob": -1.549651415189146e-06, "top_logprobs": []},
{"token": "adore", "logprob": 0.0, "top_logprobs": []},
{
"token": " programmer",
"logprob": -1.1922384146600962e-07,
"top_logprobs": [],
},
{"token": ".", "logprob": -4.827636439586058e-05, "top_logprobs": []},
{"token": " ", "logprob": -0.018011733889579773, "top_logprobs": []},
{"token": "\\n", "logprob": -0.0008687592926435173, "top_logprobs": []},
]
响应元数据 .. code-block:: python
ai_msg = llm.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
{
"is_blocked": False,
"safety_ratings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
],
"usage_metadata": {
"prompt_token_count": 17,
"candidates_token_count": 7,
"total_token_count": 24,
},
}
安全设置 .. code-block:: python
from langchain_google_vertexai import HarmBlockThreshold, HarmCategory
llm = ChatVertexAI(
model="gemini-1.5-pro",
safety_settings={
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_ONLY_HIGH,
},
)
llm.invoke(messages).response_metadata
.. code-block:: python
{
"is_blocked": False,
"safety_ratings": [
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_HARASSMENT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"probability_label": "NEGLIGIBLE",
"probability_score": 0.1,
"blocked": False,
"severity": "HARM_SEVERITY_NEGLIGIBLE",
"severity_score": 0.1,
},
],
"usage_metadata": {
"prompt_token_count": 17,
"candidates_token_count": 7,
"total_token_count": 24,
},
}
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
dict |
返回 LLM 的字典。 |
__init__ |
需要 mypy 类型检查来识别 model_name 是一个有效的参数 |
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 langchain 对象的命名空间。 |
build_extra |
根据传入的额外参数构建额外的关键字参数(kwargs)。 |
validate_environment |
验证 python 包是否存在于环境中。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
with_structured_output |
返回与给定模式匹配的格式化输出的模型包装器。 |
bind_tools |
将类工具(tool-like)对象绑定到此聊天模型。 |
lc_secrets 属性 ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache 类属性 实例属性 ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose 类属性 实例属性 ¶
是否打印响应文本。
metadata 类属性 实例属性 ¶
添加到运行跟踪中的元数据。
custom_get_token_ids 类属性 实例属性 ¶
用于计算 token 的可选编码器。
rate_limiter 类属性 实例属性 ¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)
一个可选的速率限制器,用于限制请求数量。
disable_streaming 类属性 实例属性 ¶
是否为此模型禁用流式传输。
如果绕过流式传输,则 stream/astream/astream_events 将转而调用 invoke/ainvoke。
- 如果为
True,将始终绕过流式传输情况。 - 如果为
'tool_calling',仅当模型被调用时带有tools关键字参数时,才会绕过流式传输情况。换句话说,仅当提供 tools 参数时,LangChain 才会自动切换到非流式行为 (invoke)。这提供了两全其美的方案。 - 如果为
False(默认值),则在可用时始终使用流式传输情况。
此标志的主要原因是,代码可能是使用 stream 编写的,而用户可能希望将给定模型换成另一个实现不完全支持流式传输的模型。
output_version 类属性 实例属性 ¶
要存储在消息内容中的 AIMessage 输出格式的版本。
AIMessage.content_blocks 将懒解析 content 的内容为标准格式。此标志可用于额外将标准格式存储在消息内容中,例如,用于序列化目的。
支持的值
'v0':内容中特定于提供商的格式(可以使用content_blocks进行懒解析)'v1':内容中的标准化格式(与content_blocks一致)
合作伙伴包(例如 langchain-openai)也可以使用此字段以向后兼容的方式推出新的内容格式。
在版本 1.0 中添加
profile 属性 ¶
返回模型的性能分析信息。
此属性将依赖于 langchain-model-profiles 包来检索聊天模型的能力,例如上下文窗口大小和支持的功能。
| 引发 | 描述 |
|---|---|
ImportError
|
如果未安装 |
| 返回 | 描述 |
|---|---|
ModelProfile
|
一个 |
api_endpoint 类属性 实例属性 ¶
期望的 API 端点,例如 us-central1-aiplatform.googleapis.com
api_transport 类属性 实例属性 ¶
api_transport: str | None = None
期望的 API 传输方法,可以是 'grpc' 或 'rest'。如果已定义,则使用 vertexai.init 中的默认参数。
additional_headers 类属性 实例属性 ¶
一个表示模型调用的附加头部的键值字典
client_cert_source 类属性 实例属性 ¶
一个返回客户端证书字节和私钥字节的回调函数
credentials 类属性 实例属性 ¶
要使用的默认自定义凭据 (google.auth.credentials.Credentials)
endpoint_version 类属性 实例属性 ¶
endpoint_version: Literal['v1', 'v1beta1'] = 'v1beta1'
是否使用 v1 或 v1beta1 端点。
v1 性能更高,但 v1beta1 可能包含一些新功能。
prediction_client 属性 ¶
返回 PredictionServiceClient。
async_prediction_client 属性 ¶
返回 PredictionServiceClient。
presence_penalty 类属性 实例属性 ¶
presence_penalty: float | None = None
正值会惩罚已在生成文本中出现的标记,从而增加生成更多样化内容的概率。
max_output_tokens 类属性 实例属性 ¶
令牌限制决定了单个提示输出的最大文本量。
top_p 类属性 实例属性 ¶
top_p: float | None = None
从最可能到最不可能选择令牌,直到它们的概率总和等于 top-p 值。对于 Codey 模型,Top-p 会被忽略。
top_k 类属性 实例属性 ¶
top_k: int | None = None
模型如何选择输出令牌,下一个令牌是从 top-k 最可能的令牌中选择的。对于 Codey 模型,Top-k 会被忽略。
safety_settings 类属性 实例属性 ¶
用于所有生成的默认安全设置。
例如
from langchain_google_vertexai import HarmBlockThreshold, HarmCategory
safety_settings = {
HarmCategory.HARM_CATEGORY_UNSPECIFIED: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}
response_mime_type 类属性 实例属性 ¶
response_mime_type: str | None = None
可选。生成的候选文本的输出响应 MIME 类型。仅在 Gemini 1.5 及更高版本的模型中支持。支持的 MIME 类型:* 'text/plain':(默认)文本输出。* 'application/json':候选中的 JSON 响应。* 'text/x.enum':纯文本中的枚举。模型也需要被提示输出适当的响应类型,否则行为未定义。这是一个预览功能。
response_schema 类属性 实例属性 ¶
可选。强制输出一个模式。字典的格式应遵循 Open API 模式。
cached_content 类属性 实例属性 ¶
cached_content: str | None = None
可选。在缓存模式下使用模型。仅在 Gemini 1.5 及更高版本的模型中支持。必须是包含缓存名称的字符串(一个数字序列)。
logprobs 类属性 实例属性 ¶
是否作为 AIMessage.response_metadata 的一部分返回 logprobs。
如果为 False,不返回 logprobs。如果为 True,返回 top 候选的 logprobs。如果为 int,返回 top logprobs 候选的 logprobs。
.. 注意:截至 2024-10-28,此功能仅支持 gemini-1.5-flash 模型。
.. 版本新增:2.0.6
perform_literal_eval_on_string_raw_content 类属性 实例属性 ¶
perform_literal_eval_on_string_raw_content: bool = False
是否对字符串原始内容执行字面求值。
wait_exponential_kwargs 类属性 实例属性 ¶
可选的字典,包含 wait_exponential 的参数: - multiplier:初始等待时间乘数(默认:1.0) - min:最小等待时间(秒)(默认:4.0) - max:最大等待时间(秒)(默认:10.0) - exp_base:使用的指数基数(默认:2.0)
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke 异步 ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch 异步 ¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed 异步 ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[AIMessageChunk]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream 异步 ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[AIMessageChunk]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log 异步 ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events 异步 ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform 异步 ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
lc_id 类方法 ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt 异步 ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
get_token_ids ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate 异步 ¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
__init__ ¶
需要 mypy 类型检查以将 model_name 识别为有效参数并进行参数验证。
is_lc_serializable 类方法 ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace 类方法 ¶
get_num_tokens ¶
获取文本中存在的 token 数量。
更多信息 <https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1#counttokensrequest>__
with_structured_output ¶
with_structured_output(
schema: dict | Type[BaseModel] | Type,
*,
include_raw: bool = False,
method: Literal["json_mode"] | None = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, dict | BaseModel]
返回与给定模式匹配的格式化输出的模型包装器。
.. 版本变更:1.1.0
Return type corrected in version 1.1.0. Previously if a dict schema
was provided then the output had the form
``[{"args": {}, "name": "schema_name"}]`` where the output was a list with
a single dict and the "args" of the one dict corresponded to the schema.
As of ``1.1.0`` this has been fixed so that the schema (the value
corresponding to the old "args" key) is returned directly.
| 参数 | 描述 |
|---|---|
模式
|
输出模式,可以是 dict 或 Pydantic 类。如果是一个 Pydantic 类,那么模型输出将是该类的对象。如果是一个 dict,那么模型输出将是一个 dict。使用 Pydantic 类时,返回的属性会进行验证,而使用 dict 则不会。如果 |
包含原始数据
|
如果为 False,则只返回解析后的结构化输出。如果在模型输出解析过程中发生错误,将会抛出异常。如果为 True,则会同时返回原始模型响应(一个 BaseMessage)和解析后的模型响应。如果在输出解析过程中发生错误,也会被捕获并返回。最终输出总是一个包含
类型: |
method
|
如果设置为
类型: |
| 返回 | 描述 |
|---|---|
Runnable[LanguageModelInput, dict | BaseModel]
|
一个接受任何 ChatModel 输入的 Runnable。如果 |
Runnable[LanguageModelInput, dict | BaseModel]
|
包含键的字典 — raw: BaseMessage, parsed: Optional[_DictOrPydantic], |
parsing_error
|
Optional[BaseException]。如果
类型: |
Runnable[LanguageModelInput, dict | BaseModel]
|
返回 |
Runnable[LanguageModelInput, dict | BaseModel]
|
如果 schema 是一个 Pydantic 类,那么 |
Runnable[LanguageModelInput, dict | BaseModel]
|
如果 schema 是一个 dict,那么 |
Pydantic 模式,排除原始数据
.. code-block:: python
from pydantic import BaseModel
from langchain_google_vertexai import ChatVertexAI
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatVertexAI(model_name="gemini-2.0-flash-001", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same.', justification='A pound is a pound.'
# )
Pydantic 模式,包含原始数据
.. code-block:: python
from pydantic import BaseModel
from langchain_google_vertexai import ChatVertexAI
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatVertexAI(model_name="gemini-2.0-flash-001", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
Dict 模式,排除原始数据
.. code-block:: python
from pydantic import BaseModel
from langchain_core.utils.function_calling import (
convert_to_openai_function,
)
from langchain_google_vertexai import ChatVertexAI
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_function(AnswerWithJustification)
llm = ChatVertexAI(model_name="gemini-2.0-flash-001", temperature=0)
structured_llm = llm.with_structured_output(dict_schema)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
Pydantic 模式,流式处理
.. code-block:: python
from pydantic import BaseModel, Field
from langchain_google_vertexai import ChatVertexAI
class Explanation(BaseModel):
'''A topic explanation with examples.'''
description: str = Field(
description="A brief description of the topic."
)
examples: str = Field(
description="Two examples related to the topic."
)
llm = ChatVertexAI(model_name="gemini-2.0-flash", temperature=0)
structured_llm = llm.with_structured_output(
Explanation, method="json_mode"
)
for chunk in structured_llm.stream("Tell me about transformer models"):
print(chunk)
print("-------------------------")
# -> description='Transformer models are a type of neural network architecture that have revolutionized the field of natural language processing (NLP) and are also increasingly used in computer vision and other domains. They rely on the self-attention mechanism to weigh the importance of different parts of the input data, allowing them to effectively capture long-range dependencies. Unlike recurrent neural networks (RNNs), transformers can process the entire input sequence in parallel, leading to significantly faster training times. Key components of transformer models include: the self-attention mechanism (calculates attention weights between different parts of the input), multi-head attention (performs self-attention multiple times with different learned parameters), positional encoding (adds information about the position of tokens in the input sequence), feedforward networks (applies a non-linear transformation to each position), and encoder-decoder structure (used for sequence-to-sequence tasks).' examples='1. BERT (Bidirectional Encoder Representations from Transformers): A pre-trained transformer'
# -------------------------
# description='Transformer models are a type of neural network architecture that have revolutionized the field of natural language processing (NLP) and are also increasingly used in computer vision and other domains. They rely on the self-attention mechanism to weigh the importance of different parts of the input data, allowing them to effectively capture long-range dependencies. Unlike recurrent neural networks (RNNs), transformers can process the entire input sequence in parallel, leading to significantly faster training times. Key components of transformer models include: the self-attention mechanism (calculates attention weights between different parts of the input), multi-head attention (performs self-attention multiple times with different learned parameters), positional encoding (adds information about the position of tokens in the input sequence), feedforward networks (applies a non-linear transformation to each position), and encoder-decoder structure (used for sequence-to-sequence tasks).' examples='1. BERT (Bidirectional Encoder Representations from Transformers): A pre-trained transformer model that can be fine-tuned for various NLP tasks like text classification, question answering, and named entity recognition. 2. GPT (Generative Pre-trained Transformer): A language model that uses transformers to generate coherent and contextually relevant text. GPT models are used in chatbots, content creation, and code generation.'
# -------------------------
bind_tools ¶
bind_tools(
tools: _ToolsType,
tool_config: _ToolConfigDict | None = None,
*,
tool_choice: _ToolChoiceType | bool | None = None,
**kwargs: Any,
) -> Runnable[LanguageModelInput, AIMessage]
将类工具(tool-like)对象绑定到此聊天模型。
假设模型与 Vertex 工具调用 API 兼容。
| 参数 | 描述 |
|---|---|
工具
|
要绑定到此聊天模型的工具定义列表。可以是一个 pydantic 模型、可调用对象或 BaseTool。Pydantic 模型、可调用对象和 BaseTool 将自动转换为其模式字典表示。现在支持在其参数中使用联合类型的工具,并将其转换为
类型: |
**kwargs
|
传递给 :class:
类型: |
VertexAIEmbeddings ¶
基类:BaseModel, Embeddings
Google Cloud VertexAI 嵌入模型。
| 方法 | 描述 |
|---|---|
aembed_documents |
异步嵌入搜索文档。 |
aembed_query |
异步嵌入查询文本。 |
validate_environment |
验证 python 包是否存在于环境中。 |
embed |
嵌入一个字符串列表。 |
embed_documents |
嵌入一个文档列表。 |
embed_query |
嵌入一段文本。 |
credentials 类属性 实例属性 ¶
要使用的默认自定义凭据 (google.auth.credentials.Credentials)
aembed_documents 异步 ¶
aembed_query 异步 ¶
embed ¶
embed(
texts: list[str],
embeddings_task_type: EmbeddingTaskTypes | None = None,
dimensions: int | None = None,
title: str | None = None,
) -> list[list[float]]
嵌入一个字符串列表。
| 参数 | 描述 |
|---|---|
texts
|
要嵌入的字符串列表。 |
embeddings_task_type
|
可选的嵌入任务类型,为以下之一:
类型: |
dimensions
|
可选的输出嵌入维度。仅在预览模型上受支持。
TYPE: |
title
|
文本的可选标题。仅在 TaskType 为
类型: |
| 返回 | 描述 |
|---|---|
list[list[float]]
|
嵌入列表,每个文本一个。 |
VertexPairWiseStringEvaluator ¶
基类:_EvaluatorBase, PairwiseStringEvaluator
评估预测字符串的困惑度。
| 方法 | 描述 |
|---|---|
evaluate_string_pairs |
评估输出的字符串对。 |
aevaluate_string_pairs |
异步评估输出的字符串对。 |
evaluate_string_pairs ¶
VertexStringEvaluator ¶
基类:_EvaluatorBase, StringEvaluator
评估预测字符串的困惑度。
| 方法 | 描述 |
|---|---|
evaluate_strings |
基于可选的输入和标签评估链或 LLM 的输出。 |
aevaluate_strings |
基于可选的输入和标签异步评估链或 LLM 的输出。 |
PydanticFunctionsOutputParser ¶
将输出解析为 pydantic 对象。
此解析器用于解析使用 Google Vertex 函数格式调用函数的 ChatModel 的输出。
解析器提取函数调用并将其与提供的 pydantic 模式匹配。
如果函数调用与提供的模式不匹配,将引发异常。
示例
... 代码块:: python
message = AIMessage(
content="This is a test message",
additional_kwargs={
"function_call": {
"name": "cookie",
"arguments": json.dumps({"name": "value", "age": 10}),
}
},
)
chat_generation = ChatGeneration(message=message)
class Cookie(BaseModel):
name: str
age: int
class Dog(BaseModel):
species: str
# Full output
parser = PydanticOutputFunctionsParser(
pydantic_schema={"cookie": Cookie, "dog": Dog}
)
result = parser.parse_result([chat_generation])
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
__init__ |
|
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 LangChain 对象的命名空间。 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
aparse_result |
异步将候选模型 |
aparse |
异步将单个字符串模型输出解析为某种结构。 |
parse_with_prompt |
使用输入提示作为上下文来解析 LLM 调用的输出。 |
get_format_instructions |
关于 LLM 输出应如何格式化的说明。 |
dict |
返回输出解析器的字典表示形式。 |
parse_result |
将候选模型 |
parse |
将单个字符串模型输出解析为某种结构。 |
lc_secrets property ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: str | BaseMessage, config: RunnableConfig | None = None, **kwargs: Any
) -> T
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke async ¶
ainvoke(
input: str | BaseMessage, config: RunnableConfig | None = None, **kwargs: Any | None
) -> T
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch async ¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed async ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream async ¶
astream(
input: Input, config: RunnableConfig | None = None, **kwargs: Any | None
) -> AsyncIterator[Output]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log async ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events async ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform async ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
is_lc_serializable classmethod ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace classmethod ¶
lc_id classmethod ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
aparse_result async ¶
aparse_result(result: list[Generation], *, partial: bool = False) -> T
异步将候选模型 Generation 对象列表解析为特定格式。
返回值仅从结果中的第一个 Generation 解析,该 Generation 被假定为可能性最高的 Generation。
| 参数 | 描述 |
|---|---|
result
|
要解析的
类型: |
partial
|
是否将输出解析为部分结果。这对于可以解析部分结果的解析器很有用。
类型: |
| 返回 | 描述 |
|---|---|
T
|
结构化输出。 |
parse_with_prompt ¶
VertexAI ¶
基类:_VertexAICommon, BaseLLM
Google Vertex AI 大语言模型。
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
with_structured_output |
此类未实现。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
向模型传递一系列提示并返回生成结果。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
__str__ |
返回对象的字符串表示形式以供打印。 |
dict |
返回 LLM 的字典。 |
save |
保存 LLM。 |
__init__ |
需要 mypy 类型检查来识别 model_name 是一个有效的参数 |
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 langchain 对象的命名空间。 |
validate_environment |
验证 python 包是否存在于环境中。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
lc_secrets property ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache class-attribute instance-attribute ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose class-attribute instance-attribute ¶
是否打印响应文本。
callbacks class-attribute instance-attribute ¶
callbacks: Callbacks = Field(default=None, exclude=True)
添加到运行跟踪中的回调。
tags class-attribute instance-attribute ¶
添加到运行跟踪中的标签。
metadata class-attribute instance-attribute ¶
添加到运行跟踪中的元数据。
custom_get_token_ids class-attribute instance-attribute ¶
用于计算 token 的可选编码器。
project class-attribute instance-attribute ¶
project: str | None = None
在进行 Vertex API 调用时使用的默认 GCP 项目。
location class-attribute instance-attribute ¶
进行 API 调用时使用的默认位置。
request_parallelism class-attribute instance-attribute ¶
request_parallelism: int = 5
允许向 VertexAI 模型发出请求的并行度。
stop class-attribute instance-attribute ¶
生成时使用的可选停止词列表。
full_model_name class-attribute instance-attribute ¶
模型端点的全名。
api_endpoint class-attribute instance-attribute ¶
期望的 API 端点,例如 us-central1-aiplatform.googleapis.com
api_transport class-attribute instance-attribute ¶
api_transport: str | None = None
期望的 API 传输方法,可以是 'grpc' 或 'rest'。如果已定义,则使用 vertexai.init 中的默认参数。
additional_headers class-attribute instance-attribute ¶
一个表示模型调用的附加头部的键值字典
client_cert_source class-attribute instance-attribute ¶
一个返回客户端证书字节和私钥字节的回调函数
credentials class-attribute instance-attribute ¶
要使用的默认自定义凭据 (google.auth.credentials.Credentials)
endpoint_version class-attribute instance-attribute ¶
endpoint_version: Literal['v1', 'v1beta1'] = 'v1beta1'
是否使用 v1 或 v1beta1 端点。
v1 性能更高,但 v1beta1 可能包含一些新功能。
prediction_client property ¶
返回 PredictionServiceClient。
async_prediction_client property ¶
返回 PredictionServiceClient。
temperature class-attribute instance-attribute ¶
temperature: float | None = None
采样温度,它控制了令牌选择的随机性程度。
frequency_penalty class-attribute instance-attribute ¶
frequency_penalty: float | None = None
正值会惩罚在生成文本中重复出现的标记,从而降低重复内容的概率。
presence_penalty class-attribute instance-attribute ¶
presence_penalty: float | None = None
正值会惩罚已在生成文本中出现的标记,从而增加生成更多样化内容的概率。
max_output_tokens class-attribute instance-attribute ¶
令牌限制决定了单个提示输出的最大文本量。
top_p class-attribute instance-attribute ¶
top_p: float | None = None
从最可能到最不可能选择令牌,直到它们的概率总和等于 top-p 值。对于 Codey 模型,Top-p 会被忽略。
top_k class-attribute instance-attribute ¶
top_k: int | None = None
模型如何选择输出令牌,下一个令牌是从 top-k 最可能的令牌中选择的。对于 Codey 模型,Top-k 会被忽略。
safety_settings class-attribute instance-attribute ¶
用于所有生成的默认安全设置。
例如
from langchain_google_vertexai import HarmBlockThreshold, HarmCategory
safety_settings = {
HarmCategory.HARM_CATEGORY_UNSPECIFIED: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
}
model_name class-attribute instance-attribute ¶
Vertex AI 大语言模型的名称。
tuned_model_name class-attribute instance-attribute ¶
tuned_model_name: str | None = None
微调模型的名称。如果传递了 tuned_model_name,model_name 将用于确定模型家族。
response_mime_type class-attribute instance-attribute ¶
response_mime_type: str | None = None
可选。生成的候选文本的输出响应 mimetype。仅在 Gemini 1.5 及更高版本的模型中支持。支持的 mimetype:* "text/plain":(默认)文本输出。* "application/json":候选中的 JSON 响应。* "text/x.enum":纯文本中的枚举。模型也需要被提示输出适当的响应类型,否则行为是未定义的。这是一个预览功能。
response_schema class-attribute instance-attribute ¶
可选。强制输出一个模式。字典的格式应遵循 Open API 模式。
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke async ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch async ¶
abatch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed async ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[str]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream async ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[str]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log async ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events async ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform async ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
lc_id classmethod ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt async ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
with_structured_output ¶
with_structured_output(
schema: dict | type, **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]
此类未实现。
get_token_ids ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
向模型传递一系列提示并返回生成结果。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
字符串提示列表。 |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要与每个提示关联的标签列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
metadata
|
要与每个提示关联的元数据字典列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
运行名称
|
要与每个提示关联的运行名称列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
run_id
|
要与每个提示关联的运行 ID 列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果提示不是列表。 |
ValueError
|
如果 `callbacks`、`tags`、`metadata` 或 `run_name`(如果提供)的长度与提示的长度不匹配。 |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate async ¶
agenerate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
字符串提示列表。 |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要与每个提示关联的标签列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
metadata
|
要与每个提示关联的元数据字典列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
运行名称
|
要与每个提示关联的运行名称列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
run_id
|
要与每个提示关联的运行 ID 列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `callbacks`、`tags`、`metadata` 或 `run_name`(如果提供)的长度与提示的长度不匹配。 |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
save ¶
__init__ ¶
需要 mypy 类型检查以将 model_name 识别为有效参数并进行参数验证。
is_lc_serializable classmethod ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace classmethod ¶
VertexAIModelGarden ¶
基类:_BaseVertexAIModelGarden, BaseLLM
从 Vertex AI Model Garden 提供的大语言模型。
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 LangChain 对象的命名空间。 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
with_structured_output |
此类未实现。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
向模型传递一系列提示并返回生成结果。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
__str__ |
返回对象的字符串表示形式以供打印。 |
dict |
返回 LLM 的字典。 |
save |
保存 LLM。 |
validate_environment |
验证 python 包是否存在于环境中。 |
__init__ |
|
lc_secrets property ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache 类属性 实例属性 ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose 类属性 实例属性 ¶
是否打印响应文本。
metadata 类属性 实例属性 ¶
添加到运行跟踪中的元数据。
custom_get_token_ids 类属性 实例属性 ¶
用于计算 token 的可选编码器。
api_endpoint 类属性 实例属性 ¶
期望的 API 端点,例如 us-central1-aiplatform.googleapis.com
api_transport 类属性 实例属性 ¶
api_transport: str | None = None
期望的 API 传输方法,可以是 'grpc' 或 'rest'。如果已定义,则使用 vertexai.init 中的默认参数。
additional_headers 类属性 实例属性 ¶
一个表示模型调用的附加头部的键值字典
client_cert_source 类属性 实例属性 ¶
一个返回客户端证书字节和私钥字节的回调函数
credentials 类属性 实例属性 ¶
要使用的默认自定义凭据 (google.auth.credentials.Credentials)
endpoint_version 类属性 实例属性 ¶
endpoint_version: Literal['v1', 'v1beta1'] = 'v1beta1'
是否使用 v1 或 v1beta1 端点。
v1 性能更高,但 v1beta1 可能包含一些新功能。
prediction_client 属性 ¶
返回 PredictionServiceClient。
async_prediction_client 属性 ¶
返回 PredictionServiceClient。
result_arg 类属性 实例属性 ¶
result_arg: str | None = 'generated_text'
如果模型的输出预计为字符串,则将 result_arg 设置为 None。否则,如果它是一个字典,则提供一个包含结果的参数。
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke 异步 ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch 异步 ¶
abatch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed 异步 ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[str]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream 异步 ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[str]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log 异步 ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events 异步 ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform 异步 ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
is_lc_serializable 类方法 ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace 类方法 ¶
lc_id 类方法 ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt 异步 ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
with_structured_output ¶
with_structured_output(
schema: dict | type, **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]
此类未实现。
get_token_ids ¶
get_num_tokens ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
向模型传递一系列提示并返回生成结果。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
字符串提示列表。 |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要与每个提示关联的标签列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
metadata
|
要与每个提示关联的元数据字典列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
运行名称
|
要与每个提示关联的运行名称列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
run_id
|
要与每个提示关联的运行 ID 列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果提示不是列表。 |
ValueError
|
如果 `callbacks`、`tags`、`metadata` 或 `run_name`(如果提供)的长度与提示的长度不匹配。 |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate 异步 ¶
agenerate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
字符串提示列表。 |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要与每个提示关联的标签列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
metadata
|
要与每个提示关联的元数据字典列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
运行名称
|
要与每个提示关联的运行名称列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
run_id
|
要与每个提示关联的运行 ID 列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `callbacks`、`tags`、`metadata` 或 `run_name`(如果提供)的长度与提示的长度不匹配。 |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
save ¶
DataStoreDocumentStorage ¶
基类:DocumentStorage
将文档存储在 Google Cloud DataStore 中。
| 方法 | 描述 |
|---|---|
amget |
异步获取与给定键相关联的值。 |
amset |
异步为给定的键设置值。 |
amdelete |
异步删除给定的键及其关联的值。 |
ayield_keys |
异步获取与给定前缀匹配的键的迭代器。 |
__init__ |
构造函数。 |
mget |
按 ID 批量获取文档。 |
mset |
使用每个键存储一系列文档。 |
mdelete |
按键删除一系列文档。 |
yield_keys |
生成存储中所有文档的键。 |
amget 异步 ¶
amset 异步 ¶
amdelete 异步 ¶
amdelete(keys: Sequence[K]) -> None
异步删除给定的键及其关联的值。
| 参数 | 描述 |
|---|---|
keys
|
要删除的键序列。
类型: |
ayield_keys 异步 ¶
ayield_keys(*, prefix: str | None = None) -> AsyncIterator[K] | AsyncIterator[str]
异步获取与给定前缀匹配的键的迭代器。
| 参数 | 描述 |
|---|---|
prefix
|
要匹配的前缀。
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[K] | AsyncIterator[str]
|
与给定前缀匹配的键。 |
AsyncIterator[K] | AsyncIterator[str]
|
此方法允许返回 K 或 str 的迭代器 |
AsyncIterator[K] | AsyncIterator[str]
|
取决于哪个对给定的商店更有意义。 |
__init__ ¶
mget ¶
mset ¶
GCSDocumentStorage ¶
基类:DocumentStorage
将文档存储在 Google Cloud Storage 中。对于每对 id、document_text,blob 的名称将是以纯文本格式存储的 {prefix}/{id}。
| 方法 | 描述 |
|---|---|
amget |
异步获取与给定键相关联的值。 |
amset |
异步为给定的键设置值。 |
amdelete |
异步删除给定的键及其关联的值。 |
ayield_keys |
异步获取与给定前缀匹配的键的迭代器。 |
__init__ |
构造函数。 |
mset |
使用每个键存储一系列文档。 |
mget |
按 ID 批量获取文档。 |
mdelete |
按 ID 批量删除文档。 |
yield_keys |
生成存储中存在的键。 |
amget 异步 ¶
amset 异步 ¶
amdelete 异步 ¶
amdelete(keys: Sequence[K]) -> None
异步删除给定的键及其关联的值。
| 参数 | 描述 |
|---|---|
keys
|
要删除的键序列。
类型: |
ayield_keys 异步 ¶
ayield_keys(*, prefix: str | None = None) -> AsyncIterator[K] | AsyncIterator[str]
异步获取与给定前缀匹配的键的迭代器。
| 参数 | 描述 |
|---|---|
prefix
|
要匹配的前缀。
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[K] | AsyncIterator[str]
|
与给定前缀匹配的键。 |
AsyncIterator[K] | AsyncIterator[str]
|
此方法允许返回 K 或 str 的迭代器 |
AsyncIterator[K] | AsyncIterator[str]
|
取决于哪个对给定的商店更有意义。 |
__init__ ¶
__init__(
bucket: Bucket, prefix: str | None = "documents", threaded=True, n_threads=8
) -> None
构造函数。
| 参数 | 描述 |
|---|---|
bucket
|
将存储文档的桶。
类型: |
prefix
|
所有文档名称前添加的前缀。
类型: |
mset ¶
mget ¶
VectorSearchVectorStore ¶
基类:_BaseVertexAIVectorStore
VertexAI VectorStore,使用 Vector Search 处理搜索和索引,并将文档存储在 Google Cloud Storage 中。
| 方法 | 描述 |
|---|---|
add_texts |
通过嵌入运行更多文本并添加到 `VectorStore`。 |
delete |
按向量 ID 删除。 |
get_by_ids |
根据 ID 获取文档。 |
aget_by_ids |
通过 ID 异步获取文档。 |
adelete |
按向量 ID 或其他条件异步删除。 |
aadd_texts |
通过嵌入异步运行更多文本并添加到 `VectorStore`。 |
add_documents |
在 `VectorStore` 中添加或更新文档。 |
aadd_documents |
异步运行更多文档通过嵌入并添加到 `VectorStore`。 |
search |
使用指定的搜索类型返回与查询最相似的文档。 |
asearch |
异步返回与查询最相似的文档,使用指定的搜索类型。 |
similarity_search |
返回与查询最相似的文档。 |
similarity_search_with_score |
返回与查询最相似的文档及其与查询的余弦距离。 |
asimilarity_search_with_score |
异步运行带距离的相似性搜索。 |
similarity_search_with_relevance_scores |
返回文档和在 `[0, 1]` 范围内的相关性分数。 |
asimilarity_search_with_relevance_scores |
异步返回文档和在 `[0, 1]` 范围内的相关性分数。 |
asimilarity_search |
异步返回与查询最相似的文档。 |
similarity_search_by_vector |
返回与嵌入向量最相似的文档。 |
asimilarity_search_by_vector |
异步返回与嵌入向量最相似的文档。 |
max_marginal_relevance_search |
返回使用最大边际相关性选择的文档。 |
amax_marginal_relevance_search |
异步返回使用最大边际相关性选择的文档。 |
max_marginal_relevance_search_by_vector |
返回使用最大边际相关性选择的文档。 |
amax_marginal_relevance_search_by_vector |
异步返回使用最大边际相关性选择的文档。 |
from_documents |
返回从文档和嵌入初始化的 `VectorStore`。 |
afrom_documents |
异步返回从文档和嵌入初始化的 `VectorStore`。 |
from_texts |
请改用 from components。 |
afrom_texts |
异步返回从文本和嵌入初始化的 `VectorStore`。 |
as_retriever |
返回从此 `VectorStore` 初始化的 `VectorStoreRetriever`。 |
__init__ |
构造函数。 |
similarity_search_by_vector_with_score |
返回与嵌入最相似的文档及其余弦距离。 |
from_components |
将对象创建移出构造函数。 |
add_texts ¶
add_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
is_complete_overwrite: bool = False,
**kwargs: Any,
) -> list[str]
通过嵌入运行更多文本并添加到 `VectorStore`。
| 参数 | 描述 |
|---|---|
texts
|
要添加到 `VectorStore` 的字符串的可迭代对象。 |
metadatas
|
与文本关联的元数据可选列表。 |
ids
|
可选的 ID 列表,用于分配给索引中的文本。如果为 `None`,则会生成唯一的 ID。 |
is_complete_overwrite
|
可选,确定这是追加操作还是覆盖操作。仅与 `BATCH UPDATE` 索引相关。
类型: |
kwargs
|
`VectorStore` 特定参数。
类型: |
| 返回 | 描述 |
|---|---|
list[str]
|
将文本添加到 `VectorStore` 后返回的 ID 列表。 |
delete ¶
按向量 ID 删除。
| 参数 | 描述 |
|---|---|
ids
|
要删除的 ID 列表。 |
**kwargs
|
如果添加了 metadata={},则删除与元数据筛选器匹配的文档,并且不需要参数 ID。
类型: |
| 返回 | 描述 |
|---|---|
bool | None
|
如果删除成功,则为 `True`。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `ids` 为 `None` 或空列表。 |
RuntimeError
|
如果在删除过程中发生错误。 |
get_by_ids ¶
aget_by_ids 异步 ¶
adelete 异步 ¶
aadd_texts 异步 ¶
aadd_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any,
) -> list[str]
通过嵌入异步运行更多文本并添加到 `VectorStore`。
| 参数 | 描述 |
|---|---|
texts
|
要添加到 `VectorStore` 的字符串的可迭代对象。 |
metadatas
|
与文本关联的元数据可选列表。 |
ids
|
可选列表 |
**kwargs
|
`VectorStore` 特定参数。
类型: |
| 返回 | 描述 |
|---|---|
list[str]
|
将文本添加到 `VectorStore` 后返回的 ID 列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果元数据的数量与文本的数量不匹配。 |
ValueError
|
如果 ID 的数量与文本的数量不匹配。 |
add_documents ¶
aadd_documents 异步 ¶
search ¶
使用指定的搜索类型返回与查询最相似的文档。
| 参数 | 描述 |
|---|---|
query
|
输入文本。
类型: |
search_type
|
要执行的搜索类型。可以是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'`。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
与查询最相似的 `Document` 对象列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `search_type` 不是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'` 之一。 |
asearch 异步 ¶
异步返回与查询最相似的文档,使用指定的搜索类型。
| 参数 | 描述 |
|---|---|
query
|
输入文本。
类型: |
search_type
|
要执行的搜索类型。可以是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'`。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
与查询最相似的 `Document` 对象列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `search_type` 不是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'` 之一。 |
similarity_search ¶
similarity_search(
query: str,
k: int = 4,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[Document]
返回与查询最相似的文档。
| 参数 | 描述 |
|---|---|
query
|
将用于搜索相似文档的字符串。
类型: |
k
|
将检索的邻居数量。
TYPE: |
filter
|
可选。用于筛选匹配结果的命名空间列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
可选。用于筛选匹配结果的 NumericNamespaces 列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
k 个匹配文档的列表。 |
similarity_search_with_score ¶
similarity_search_with_score(
query: str,
k: int = 4,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[tuple[Document, float | dict[str, float]]]
返回与查询最相似的文档及其与查询的余弦距离。
| 参数 | 描述 |
|---|---|
query
|
字符串查询,查找与之相似的文档。
类型: |
k
|
要返回的文档数量。默认为 4。
TYPE: |
filter
|
用于筛选匹配结果的 `Namespace` 对象列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
用于筛选匹配结果的 `NumericNamespace` 对象列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[tuple[Document, float | dict[str, float]]]
|
与查询文本最相似的 `Document` 对象列表以及每个对象的余弦 |
list[tuple[Document, float | dict[str, float]]]
|
距离(浮点数)。分数越高表示相似度越高。 |
asimilarity_search_with_score 异步 ¶
similarity_search_with_relevance_scores ¶
asimilarity_search_with_relevance_scores 异步 ¶
asimilarity_search 异步 ¶
similarity_search_by_vector ¶
asimilarity_search_by_vector 异步 ¶
max_marginal_relevance_search ¶
max_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
query
|
用于查找相似文档的文本。
类型: |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
amax_marginal_relevance_search 异步 ¶
amax_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
query
|
用于查找相似文档的文本。
类型: |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
max_marginal_relevance_search_by_vector ¶
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
amax_marginal_relevance_search_by_vector 异步 ¶
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
from_documents 类方法 ¶
from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) -> Self
返回从文档和嵌入初始化的 `VectorStore`。
| 参数 | 描述 |
|---|---|
documents
|
要添加到 `VectorStore` 的 `Document` 对象列表。 |
embedding
|
要使用的嵌入函数。
TYPE: |
**kwargs
|
附加的关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
Self
|
从文档和嵌入初始化的 `VectorStore`。 |
afrom_documents 异步 类方法 ¶
afrom_documents(
documents: list[Document], embedding: Embeddings, **kwargs: Any
) -> Self
异步返回从文档和嵌入初始化的 `VectorStore`。
| 参数 | 描述 |
|---|---|
documents
|
要添加到 `VectorStore` 的 `Document` 对象列表。 |
embedding
|
要使用的嵌入函数。
TYPE: |
**kwargs
|
附加的关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
Self
|
从文档和嵌入初始化的 `VectorStore`。 |
from_texts 类方法 ¶
from_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
**kwargs: Any,
) -> _BaseVertexAIVectorStore
请改用 from components。
afrom_texts 异步 类方法 ¶
as_retriever ¶
as_retriever(**kwargs: Any) -> VectorStoreRetriever
返回从此 `VectorStore` 初始化的 `VectorStoreRetriever`。
| 参数 | 描述 |
|---|---|
**kwargs
|
传递给搜索函数的关键字参数。可以包括
类型: |
| 返回 | 描述 |
|---|---|
VectorStoreRetriever
|
`VectorStore` 的检索器类。 |
示例
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50})
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.8},
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)
__init__ ¶
__init__(
searcher: Searcher,
document_storage: DocumentStorage,
embeddings: Embeddings | None = None,
) -> None
构造函数。
| 参数 | 描述 |
|---|---|
searcher
|
负责搜索和存储索引的对象。
类型: |
document_storage
|
负责存储和检索文档的对象。
类型: |
embeddings
|
负责将文本转换为嵌入的对象。
TYPE: |
similarity_search_by_vector_with_score ¶
similarity_search_by_vector_with_score(
embedding: list[float],
sparse_embedding: dict[str, list[int] | list[float]] | None = None,
k: int = 4,
rrf_ranking_alpha: float = 1,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[tuple[Document, float | dict[str, float]]]
返回与嵌入最相似的文档及其余弦距离。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
sparse_embedding
|
稀疏嵌入字典,将嵌入表示为维度列表和稀疏值列表:即 {"values": [0.7, 0.5], "dimensions": [10, 20]} |
k
|
要返回的文档数量。默认为 4。
TYPE: |
rrf_ranking_alpha
|
倒数排序融合权重,介于 0 和 1.0 之间的浮点数,用于权衡密集搜索与稀疏搜索,例如: - rrf_ranking_alpha=1:仅密集 - rrf_ranking_alpha=0:仅稀疏 - rrf_ranking_alpha=0.7:密集搜索权重为 0.7,稀疏搜索权重为 0.3
类型: |
filter
|
可选。用于筛选匹配结果的命名空间列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
可选。用于筛选匹配结果的 NumericNamespaces 列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[tuple[Document, float | dict[str, float]]]
|
与查询文本最相似的 `Document` 对象列表,以及每个对象的余弦距离(浮点数),或者在进行混合搜索时,为包含密集和稀疏分数的字典。 分数越高表示相似度越高。 |
from_components 类方法 ¶
from_components(
project_id: str,
region: str,
gcs_bucket_name: str,
index_id: str,
endpoint_id: str,
private_service_connect_ip_address: str | None = None,
credentials: Credentials | None = None,
credentials_path: str | None = None,
embedding: Embeddings | None = None,
stream_update: bool = False,
**kwargs: Any,
) -> VectorSearchVectorStore
将对象创建移出构造函数。
| 参数 | 描述 |
|---|---|
project_id
|
GCP 项目 ID。
类型: |
region
|
进行 API 调用的默认位置。它必须与 GCS 桶的位置相同,并且必须是区域性的。
类型: |
gcs_bucket_name
|
为了创建索引而存储向量的位置。
类型: |
index_id
|
已创建索引的 ID。
类型: |
endpoint_id
|
已创建端点的 ID。
类型: |
private_service_connect_ip_address
|
私有服务连接实例的 IP 地址。
类型: |
credentials
|
Google Cloud 凭据对象。
类型: |
credentials_path
|
本地文件系统上 Google 凭据的路径。
类型: |
embedding
|
将用于嵌入文本的 :class:`Embeddings`。
TYPE: |
stream_update
|
是使用流式更新还是批量更新。VectorSearch 索引必须与流式/批量更新兼容。
类型: |
kwargs
|
传递给 VertexAIVectorSearch.init() 的其他关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
VectorSearchVectorStore
|
一个已配置的 VertexAIVectorSearch。 |
VectorSearchVectorStoreDatastore ¶
基类:_BaseVertexAIVectorStore
带有 DatasTore 文档存储的 VectorSearch。
| 方法 | 描述 |
|---|---|
add_texts |
通过嵌入运行更多文本并添加到 `VectorStore`。 |
delete |
按向量 ID 删除。 |
get_by_ids |
根据 ID 获取文档。 |
aget_by_ids |
通过 ID 异步获取文档。 |
adelete |
按向量 ID 或其他条件异步删除。 |
aadd_texts |
通过嵌入异步运行更多文本并添加到 `VectorStore`。 |
add_documents |
在 `VectorStore` 中添加或更新文档。 |
aadd_documents |
异步运行更多文档通过嵌入并添加到 `VectorStore`。 |
search |
使用指定的搜索类型返回与查询最相似的文档。 |
asearch |
异步返回与查询最相似的文档,使用指定的搜索类型。 |
similarity_search |
返回与查询最相似的文档。 |
similarity_search_with_score |
返回与查询最相似的文档及其与查询的余弦距离。 |
asimilarity_search_with_score |
异步运行带距离的相似性搜索。 |
similarity_search_with_relevance_scores |
返回文档和在 `[0, 1]` 范围内的相关性分数。 |
asimilarity_search_with_relevance_scores |
异步返回文档和在 `[0, 1]` 范围内的相关性分数。 |
asimilarity_search |
异步返回与查询最相似的文档。 |
similarity_search_by_vector |
返回与嵌入向量最相似的文档。 |
asimilarity_search_by_vector |
异步返回与嵌入向量最相似的文档。 |
max_marginal_relevance_search |
返回使用最大边际相关性选择的文档。 |
amax_marginal_relevance_search |
异步返回使用最大边际相关性选择的文档。 |
max_marginal_relevance_search_by_vector |
返回使用最大边际相关性选择的文档。 |
amax_marginal_relevance_search_by_vector |
异步返回使用最大边际相关性选择的文档。 |
from_documents |
返回从文档和嵌入初始化的 `VectorStore`。 |
afrom_documents |
异步返回从文档和嵌入初始化的 `VectorStore`。 |
from_texts |
请改用 from components。 |
afrom_texts |
异步返回从文本和嵌入初始化的 `VectorStore`。 |
as_retriever |
返回从此 `VectorStore` 初始化的 `VectorStoreRetriever`。 |
__init__ |
构造函数。 |
similarity_search_by_vector_with_score |
返回与嵌入最相似的文档及其余弦距离。 |
from_components |
将对象创建移出构造函数。 |
add_texts ¶
add_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
is_complete_overwrite: bool = False,
**kwargs: Any,
) -> list[str]
通过嵌入运行更多文本并添加到 `VectorStore`。
| 参数 | 描述 |
|---|---|
texts
|
要添加到 `VectorStore` 的字符串的可迭代对象。 |
metadatas
|
与文本关联的元数据可选列表。 |
ids
|
可选的 ID 列表,用于分配给索引中的文本。如果为 `None`,则会生成唯一的 ID。 |
is_complete_overwrite
|
可选,确定这是追加操作还是覆盖操作。仅与 `BATCH UPDATE` 索引相关。
类型: |
kwargs
|
`VectorStore` 特定参数。
类型: |
| 返回 | 描述 |
|---|---|
list[str]
|
将文本添加到 `VectorStore` 后返回的 ID 列表。 |
delete ¶
按向量 ID 删除。
| 参数 | 描述 |
|---|---|
ids
|
要删除的 ID 列表。 |
**kwargs
|
如果添加了 metadata={},则删除与元数据筛选器匹配的文档,并且不需要参数 ID。
类型: |
| 返回 | 描述 |
|---|---|
bool | None
|
如果删除成功,则为 `True`。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `ids` 为 `None` 或空列表。 |
RuntimeError
|
如果在删除过程中发生错误。 |
get_by_ids ¶
aget_by_ids 异步 ¶
adelete 异步 ¶
aadd_texts 异步 ¶
aadd_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any,
) -> list[str]
通过嵌入异步运行更多文本并添加到 `VectorStore`。
| 参数 | 描述 |
|---|---|
texts
|
要添加到 `VectorStore` 的字符串的可迭代对象。 |
metadatas
|
与文本关联的元数据可选列表。 |
ids
|
可选列表 |
**kwargs
|
`VectorStore` 特定参数。
类型: |
| 返回 | 描述 |
|---|---|
list[str]
|
将文本添加到 `VectorStore` 后返回的 ID 列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果元数据的数量与文本的数量不匹配。 |
ValueError
|
如果 ID 的数量与文本的数量不匹配。 |
add_documents ¶
aadd_documents 异步 ¶
search ¶
使用指定的搜索类型返回与查询最相似的文档。
| 参数 | 描述 |
|---|---|
query
|
输入文本。
类型: |
search_type
|
要执行的搜索类型。可以是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'`。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
与查询最相似的 `Document` 对象列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `search_type` 不是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'` 之一。 |
asearch 异步 ¶
异步返回与查询最相似的文档,使用指定的搜索类型。
| 参数 | 描述 |
|---|---|
query
|
输入文本。
类型: |
search_type
|
要执行的搜索类型。可以是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'`。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
与查询最相似的 `Document` 对象列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `search_type` 不是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'` 之一。 |
similarity_search ¶
similarity_search(
query: str,
k: int = 4,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[Document]
返回与查询最相似的文档。
| 参数 | 描述 |
|---|---|
query
|
将用于搜索相似文档的字符串。
类型: |
k
|
将检索的邻居数量。
TYPE: |
filter
|
可选。用于筛选匹配结果的命名空间列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
可选。用于筛选匹配结果的 NumericNamespaces 列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
k 个匹配文档的列表。 |
similarity_search_with_score ¶
similarity_search_with_score(
query: str,
k: int = 4,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[tuple[Document, float | dict[str, float]]]
返回与查询最相似的文档及其与查询的余弦距离。
| 参数 | 描述 |
|---|---|
query
|
字符串查询,查找与之相似的文档。
类型: |
k
|
要返回的文档数量。默认为 4。
TYPE: |
filter
|
用于筛选匹配结果的 `Namespace` 对象列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
用于筛选匹配结果的 `NumericNamespace` 对象列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[tuple[Document, float | dict[str, float]]]
|
与查询文本最相似的 `Document` 对象列表以及每个对象的余弦 |
list[tuple[Document, float | dict[str, float]]]
|
距离(浮点数)。分数越高表示相似度越高。 |
asimilarity_search_with_score 异步 ¶
similarity_search_with_relevance_scores ¶
asimilarity_search_with_relevance_scores 异步 ¶
asimilarity_search 异步 ¶
similarity_search_by_vector ¶
asimilarity_search_by_vector 异步 ¶
max_marginal_relevance_search ¶
max_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
query
|
用于查找相似文档的文本。
类型: |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
amax_marginal_relevance_search 异步 ¶
amax_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
query
|
用于查找相似文档的文本。
类型: |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
max_marginal_relevance_search_by_vector ¶
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
amax_marginal_relevance_search_by_vector 异步 ¶
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
from_documents 类方法 ¶
from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) -> Self
返回从文档和嵌入初始化的 `VectorStore`。
| 参数 | 描述 |
|---|---|
documents
|
要添加到 `VectorStore` 的 `Document` 对象列表。 |
embedding
|
要使用的嵌入函数。
TYPE: |
**kwargs
|
附加的关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
Self
|
从文档和嵌入初始化的 `VectorStore`。 |
afrom_documents 异步 类方法 ¶
afrom_documents(
documents: list[Document], embedding: Embeddings, **kwargs: Any
) -> Self
异步返回从文档和嵌入初始化的 `VectorStore`。
| 参数 | 描述 |
|---|---|
documents
|
要添加到 `VectorStore` 的 `Document` 对象列表。 |
embedding
|
要使用的嵌入函数。
TYPE: |
**kwargs
|
附加的关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
Self
|
从文档和嵌入初始化的 `VectorStore`。 |
from_texts 类方法 ¶
from_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
**kwargs: Any,
) -> _BaseVertexAIVectorStore
请改用 from components。
afrom_texts 异步 类方法 ¶
as_retriever ¶
as_retriever(**kwargs: Any) -> VectorStoreRetriever
返回从此 `VectorStore` 初始化的 `VectorStoreRetriever`。
| 参数 | 描述 |
|---|---|
**kwargs
|
传递给搜索函数的关键字参数。可以包括
类型: |
| 返回 | 描述 |
|---|---|
VectorStoreRetriever
|
`VectorStore` 的检索器类。 |
示例
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50})
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.8},
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)
__init__ ¶
__init__(
searcher: Searcher,
document_storage: DocumentStorage,
embeddings: Embeddings | None = None,
) -> None
构造函数。
| 参数 | 描述 |
|---|---|
searcher
|
负责搜索和存储索引的对象。
类型: |
document_storage
|
负责存储和检索文档的对象。
类型: |
embeddings
|
负责将文本转换为嵌入的对象。
TYPE: |
similarity_search_by_vector_with_score ¶
similarity_search_by_vector_with_score(
embedding: list[float],
sparse_embedding: dict[str, list[int] | list[float]] | None = None,
k: int = 4,
rrf_ranking_alpha: float = 1,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[tuple[Document, float | dict[str, float]]]
返回与嵌入最相似的文档及其余弦距离。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
sparse_embedding
|
稀疏嵌入字典,将嵌入表示为维度列表和稀疏值列表:即 {"values": [0.7, 0.5], "dimensions": [10, 20]} |
k
|
要返回的文档数量。默认为 4。
TYPE: |
rrf_ranking_alpha
|
倒数排序融合权重,介于 0 和 1.0 之间的浮点数,用于权衡密集搜索与稀疏搜索,例如: - rrf_ranking_alpha=1:仅密集 - rrf_ranking_alpha=0:仅稀疏 - rrf_ranking_alpha=0.7:密集搜索权重为 0.7,稀疏搜索权重为 0.3
类型: |
filter
|
可选。用于筛选匹配结果的命名空间列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
可选。用于筛选匹配结果的 NumericNamespaces 列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[tuple[Document, float | dict[str, float]]]
|
与查询文本最相似的 `Document` 对象列表,以及每个对象的余弦距离(浮点数),或者在进行混合搜索时,为包含密集和稀疏分数的字典。 分数越高表示相似度越高。 |
from_components 类方法 ¶
from_components(
project_id: str,
region: str,
index_id: str,
endpoint_id: str,
index_staging_bucket_name: str | None = None,
credentials: Credentials | None = None,
credentials_path: str | None = None,
embedding: Embeddings | None = None,
stream_update: bool = False,
datastore_client_kwargs: dict[str, Any] | None = None,
exclude_from_indexes: list[str] | None = None,
datastore_kind: str = "document_id",
datastore_text_property_name: str = "text",
datastore_metadata_property_name: str = "metadata",
**kwargs: dict[str, Any],
) -> VectorSearchVectorStoreDatastore
将对象创建移出构造函数。
| 参数 | 描述 |
|---|---|
project_id
|
GCP 项目 ID。
类型: |
region
|
进行 API 调用的默认位置。它必须与 GCS 桶的位置相同,并且必须是区域性的。
类型: |
index_id
|
已创建索引的 ID。
类型: |
endpoint_id
|
已创建端点的 ID。
类型: |
index_staging_bucket_name
|
如果索引通过批量方式更新,则为更新索引前暂存数据的存储桶。仅在更新索引时需要。
类型: |
credentials
|
Google Cloud 凭据对象。
类型: |
credentials_path
|
本地文件系统上 Google 凭据的路径。
类型: |
embedding
|
将用于嵌入文本的 :class:`Embeddings`。
TYPE: |
stream_update
|
是使用流式更新还是批量更新。VectorSearch 索引必须与流式/批量更新兼容。
类型: |
datastore_client_kwargs
|
传递给 datastore 客户端的其他关键字参数。 |
exclude_from_indexes
|
要从 datastore 索引中排除的字段。 |
datastore_kind
|
Datastore 的种类名称。
类型: |
datastore_text_property_name
|
用于存储文本内容的属性名称。
类型: |
datastore_metadata_property_name
|
用于存储元数据的属性名称。
类型: |
kwargs
|
传递给 VertexAIVectorSearch.init() 的其他关键字参数。 |
| 返回 | 描述 |
|---|---|
VectorSearchVectorStoreDatastore
|
一个已配置的 VectorSearchVectorStoreDatastore。 |
VectorSearchVectorStoreGCS ¶
`VectorSearchVectorStore` 的别名,用于与其他具有不同文档存储后端的向量存储保持一致。
| 方法 | 描述 |
|---|---|
add_texts |
通过嵌入运行更多文本并添加到 `VectorStore`。 |
delete |
按向量 ID 删除。 |
get_by_ids |
根据 ID 获取文档。 |
aget_by_ids |
通过 ID 异步获取文档。 |
adelete |
按向量 ID 或其他条件异步删除。 |
aadd_texts |
通过嵌入异步运行更多文本并添加到 `VectorStore`。 |
add_documents |
在 `VectorStore` 中添加或更新文档。 |
aadd_documents |
异步运行更多文档通过嵌入并添加到 `VectorStore`。 |
search |
使用指定的搜索类型返回与查询最相似的文档。 |
asearch |
异步返回与查询最相似的文档,使用指定的搜索类型。 |
similarity_search |
返回与查询最相似的文档。 |
similarity_search_with_score |
返回与查询最相似的文档及其与查询的余弦距离。 |
asimilarity_search_with_score |
异步运行带距离的相似性搜索。 |
similarity_search_with_relevance_scores |
返回文档和在 `[0, 1]` 范围内的相关性分数。 |
asimilarity_search_with_relevance_scores |
异步返回文档和在 `[0, 1]` 范围内的相关性分数。 |
asimilarity_search |
异步返回与查询最相似的文档。 |
similarity_search_by_vector |
返回与嵌入向量最相似的文档。 |
asimilarity_search_by_vector |
异步返回与嵌入向量最相似的文档。 |
max_marginal_relevance_search |
返回使用最大边际相关性选择的文档。 |
amax_marginal_relevance_search |
异步返回使用最大边际相关性选择的文档。 |
max_marginal_relevance_search_by_vector |
返回使用最大边际相关性选择的文档。 |
amax_marginal_relevance_search_by_vector |
异步返回使用最大边际相关性选择的文档。 |
from_documents |
返回从文档和嵌入初始化的 `VectorStore`。 |
afrom_documents |
异步返回从文档和嵌入初始化的 `VectorStore`。 |
from_texts |
请改用 from components。 |
afrom_texts |
异步返回从文本和嵌入初始化的 `VectorStore`。 |
as_retriever |
返回从此 `VectorStore` 初始化的 `VectorStoreRetriever`。 |
__init__ |
构造函数。 |
similarity_search_by_vector_with_score |
返回与嵌入最相似的文档及其余弦距离。 |
from_components |
将对象创建移出构造函数。 |
add_texts ¶
add_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
is_complete_overwrite: bool = False,
**kwargs: Any,
) -> list[str]
通过嵌入运行更多文本并添加到 `VectorStore`。
| 参数 | 描述 |
|---|---|
texts
|
要添加到 `VectorStore` 的字符串的可迭代对象。 |
metadatas
|
与文本关联的元数据可选列表。 |
ids
|
可选的 ID 列表,用于分配给索引中的文本。如果为 `None`,则会生成唯一的 ID。 |
is_complete_overwrite
|
可选,确定这是追加操作还是覆盖操作。仅与 `BATCH UPDATE` 索引相关。
类型: |
kwargs
|
`VectorStore` 特定参数。
类型: |
| 返回 | 描述 |
|---|---|
list[str]
|
将文本添加到 `VectorStore` 后返回的 ID 列表。 |
delete ¶
按向量 ID 删除。
| 参数 | 描述 |
|---|---|
ids
|
要删除的 ID 列表。 |
**kwargs
|
如果添加了 metadata={},则删除与元数据筛选器匹配的文档,并且不需要参数 ID。
类型: |
| 返回 | 描述 |
|---|---|
bool | None
|
如果删除成功,则为 `True`。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `ids` 为 `None` 或空列表。 |
RuntimeError
|
如果在删除过程中发生错误。 |
get_by_ids ¶
aget_by_ids 异步 ¶
adelete 异步 ¶
aadd_texts 异步 ¶
aadd_texts(
texts: Iterable[str],
metadatas: list[dict] | None = None,
*,
ids: list[str] | None = None,
**kwargs: Any,
) -> list[str]
通过嵌入异步运行更多文本并添加到 `VectorStore`。
| 参数 | 描述 |
|---|---|
texts
|
要添加到 `VectorStore` 的字符串的可迭代对象。 |
metadatas
|
与文本关联的元数据可选列表。 |
ids
|
可选列表 |
**kwargs
|
`VectorStore` 特定参数。
类型: |
| 返回 | 描述 |
|---|---|
list[str]
|
将文本添加到 `VectorStore` 后返回的 ID 列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果元数据的数量与文本的数量不匹配。 |
ValueError
|
如果 ID 的数量与文本的数量不匹配。 |
add_documents ¶
aadd_documents 异步 ¶
search ¶
使用指定的搜索类型返回与查询最相似的文档。
| 参数 | 描述 |
|---|---|
query
|
输入文本。
类型: |
search_type
|
要执行的搜索类型。可以是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'`。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
与查询最相似的 `Document` 对象列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `search_type` 不是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'` 之一。 |
asearch 异步 ¶
异步返回与查询最相似的文档,使用指定的搜索类型。
| 参数 | 描述 |
|---|---|
query
|
输入文本。
类型: |
search_type
|
要执行的搜索类型。可以是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'`。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
与查询最相似的 `Document` 对象列表。 |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `search_type` 不是 `'similarity'`、`'mmr'` 或 `'similarity_score_threshold'` 之一。 |
similarity_search ¶
similarity_search(
query: str,
k: int = 4,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[Document]
返回与查询最相似的文档。
| 参数 | 描述 |
|---|---|
query
|
将用于搜索相似文档的字符串。
类型: |
k
|
将检索的邻居数量。
TYPE: |
filter
|
可选。用于筛选匹配结果的命名空间列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
可选。用于筛选匹配结果的 NumericNamespaces 列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
k 个匹配文档的列表。 |
similarity_search_with_score ¶
similarity_search_with_score(
query: str,
k: int = 4,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[tuple[Document, float | dict[str, float]]]
返回与查询最相似的文档及其与查询的余弦距离。
| 参数 | 描述 |
|---|---|
query
|
字符串查询,查找与之相似的文档。
类型: |
k
|
要返回的文档数量。默认为 4。
TYPE: |
filter
|
用于筛选匹配结果的 `Namespace` 对象列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
用于筛选匹配结果的 `NumericNamespace` 对象列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[tuple[Document, float | dict[str, float]]]
|
与查询文本最相似的 `Document` 对象列表以及每个对象的余弦 |
list[tuple[Document, float | dict[str, float]]]
|
距离(浮点数)。分数越高表示相似度越高。 |
asimilarity_search_with_score 异步 ¶
similarity_search_with_relevance_scores ¶
asimilarity_search_with_relevance_scores 异步 ¶
asimilarity_search 异步 ¶
similarity_search_by_vector ¶
asimilarity_search_by_vector 异步 ¶
max_marginal_relevance_search ¶
max_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
query
|
用于查找相似文档的文本。
类型: |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
amax_marginal_relevance_search 异步 ¶
amax_marginal_relevance_search(
query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any
) -> list[Document]
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
query
|
用于查找相似文档的文本。
类型: |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
max_marginal_relevance_search_by_vector ¶
max_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
amax_marginal_relevance_search_by_vector 异步 ¶
amax_marginal_relevance_search_by_vector(
embedding: list[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> list[Document]
异步返回使用最大边际相关性选择的文档。
最大边际相关性优化查询相似度与所选文档之间的多样性。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
k
|
要返回的 `Document` 对象数量。
TYPE: |
fetch_k
|
要获取并传递给 MMR 算法的 `Document` 对象数量。
类型: |
lambda_mult
|
一个介于 `0` 和 `1` 之间的数字,决定了结果之间的多样性程度,其中 `0` 对应最大多样性,`1` 对应最小多样性。
类型: |
**kwargs
|
传递给搜索方法的参数。
类型: |
| 返回 | 描述 |
|---|---|
list[Document]
|
通过最大边际相关性选择的 `Document` 对象列表。 |
from_documents 类方法 ¶
from_documents(documents: list[Document], embedding: Embeddings, **kwargs: Any) -> Self
返回从文档和嵌入初始化的 `VectorStore`。
| 参数 | 描述 |
|---|---|
documents
|
要添加到 `VectorStore` 的 `Document` 对象列表。 |
embedding
|
要使用的嵌入函数。
TYPE: |
**kwargs
|
附加的关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
Self
|
从文档和嵌入初始化的 `VectorStore`。 |
afrom_documents 异步 类方法 ¶
afrom_documents(
documents: list[Document], embedding: Embeddings, **kwargs: Any
) -> Self
异步返回从文档和嵌入初始化的 `VectorStore`。
| 参数 | 描述 |
|---|---|
documents
|
要添加到 `VectorStore` 的 `Document` 对象列表。 |
embedding
|
要使用的嵌入函数。
TYPE: |
**kwargs
|
附加的关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
Self
|
从文档和嵌入初始化的 `VectorStore`。 |
from_texts 类方法 ¶
from_texts(
texts: list[str],
embedding: Embeddings,
metadatas: list[dict] | None = None,
**kwargs: Any,
) -> _BaseVertexAIVectorStore
请改用 from components。
afrom_texts 异步 类方法 ¶
as_retriever ¶
as_retriever(**kwargs: Any) -> VectorStoreRetriever
返回从此 `VectorStore` 初始化的 `VectorStoreRetriever`。
| 参数 | 描述 |
|---|---|
**kwargs
|
传递给搜索函数的关键字参数。可以包括
类型: |
| 返回 | 描述 |
|---|---|
VectorStoreRetriever
|
`VectorStore` 的检索器类。 |
示例
# Retrieve more documents with higher diversity
# Useful if your dataset has many similar documents
docsearch.as_retriever(
search_type="mmr", search_kwargs={"k": 6, "lambda_mult": 0.25}
)
# Fetch more documents for the MMR algorithm to consider
# But only return the top 5
docsearch.as_retriever(search_type="mmr", search_kwargs={"k": 5, "fetch_k": 50})
# Only retrieve documents that have a relevance score
# Above a certain threshold
docsearch.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": 0.8},
)
# Only get the single most similar document from the dataset
docsearch.as_retriever(search_kwargs={"k": 1})
# Use a filter to only retrieve documents from a specific paper
docsearch.as_retriever(
search_kwargs={"filter": {"paper_title": "GPT-4 Technical Report"}}
)
__init__ ¶
__init__(
searcher: Searcher,
document_storage: DocumentStorage,
embeddings: Embeddings | None = None,
) -> None
构造函数。
| 参数 | 描述 |
|---|---|
searcher
|
负责搜索和存储索引的对象。
类型: |
document_storage
|
负责存储和检索文档的对象。
类型: |
embeddings
|
负责将文本转换为嵌入的对象。
TYPE: |
similarity_search_by_vector_with_score ¶
similarity_search_by_vector_with_score(
embedding: list[float],
sparse_embedding: dict[str, list[int] | list[float]] | None = None,
k: int = 4,
rrf_ranking_alpha: float = 1,
filter: list[Namespace] | None = None,
numeric_filter: list[NumericNamespace] | None = None,
**kwargs: Any,
) -> list[tuple[Document, float | dict[str, float]]]
返回与嵌入最相似的文档及其余弦距离。
| 参数 | 描述 |
|---|---|
embedding
|
用于查找相似文档的嵌入。 |
sparse_embedding
|
稀疏嵌入字典,将嵌入表示为维度列表和稀疏值列表:即 {"values": [0.7, 0.5], "dimensions": [10, 20]} |
k
|
要返回的文档数量。默认为 4。
TYPE: |
rrf_ranking_alpha
|
倒数排序融合权重,介于 0 和 1.0 之间的浮点数,用于权衡密集搜索与稀疏搜索,例如: - rrf_ranking_alpha=1:仅密集 - rrf_ranking_alpha=0:仅稀疏 - rrf_ranking_alpha=0.7:密集搜索权重为 0.7,稀疏搜索权重为 0.3
类型: |
filter
|
可选。用于筛选匹配结果的命名空间列表。例如:[Namespace("color", ["red"], []), Namespace("shape", [], ["squared"])] 将匹配满足“红色”的数据点,但不包括具有“方形”形状的数据点。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
numeric_filter
|
可选。用于筛选匹配结果的 NumericNamespaces 列表。请参阅 https://cloud.google.com/vertex-ai/docs/matching-engine/filtering#json 了解更多详细信息。
类型: |
| 返回 | 描述 |
|---|---|
list[tuple[Document, float | dict[str, float]]]
|
与查询文本最相似的 `Document` 对象列表,以及每个对象的余弦距离(浮点数),或者在进行混合搜索时,为包含密集和稀疏分数的字典。 分数越高表示相似度越高。 |
from_components 类方法 ¶
from_components(
project_id: str,
region: str,
gcs_bucket_name: str,
index_id: str,
endpoint_id: str,
private_service_connect_ip_address: str | None = None,
credentials: Credentials | None = None,
credentials_path: str | None = None,
embedding: Embeddings | None = None,
stream_update: bool = False,
**kwargs: Any,
) -> VectorSearchVectorStore
将对象创建移出构造函数。
| 参数 | 描述 |
|---|---|
project_id
|
GCP 项目 ID。
类型: |
region
|
进行 API 调用的默认位置。它必须与 GCS 桶的位置相同,并且必须是区域性的。
类型: |
gcs_bucket_name
|
为了创建索引而存储向量的位置。
类型: |
index_id
|
已创建索引的 ID。
类型: |
endpoint_id
|
已创建端点的 ID。
类型: |
private_service_connect_ip_address
|
私有服务连接实例的 IP 地址。
类型: |
credentials
|
Google Cloud 凭据对象。
类型: |
credentials_path
|
本地文件系统上 Google 凭据的路径。
类型: |
embedding
|
将用于嵌入文本的 :class:`Embeddings`。
TYPE: |
stream_update
|
是使用流式更新还是批量更新。VectorSearch 索引必须与流式/批量更新兼容。
类型: |
kwargs
|
传递给 VertexAIVectorSearch.init() 的其他关键字参数。
类型: |
| 返回 | 描述 |
|---|---|
VectorSearchVectorStore
|
一个已配置的 VertexAIVectorSearch。 |
VertexAIImageCaptioning ¶
基类:_BaseVertexAIImageCaptioning、BaseLLM
将图像字幕模型实现为 LLM。
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
__init__ |
|
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 LangChain 对象的命名空间。 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
with_structured_output |
此类未实现。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
向模型传递一系列提示并返回生成结果。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
__str__ |
返回对象的字符串表示形式以供打印。 |
dict |
返回 LLM 的字典。 |
save |
保存 LLM。 |
lc_secrets property ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache class-attribute instance-attribute ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose class-attribute instance-attribute ¶
是否打印响应文本。
callbacks class-attribute instance-attribute ¶
callbacks: Callbacks = Field(default=None, exclude=True)
添加到运行跟踪中的回调。
tags class-attribute instance-attribute ¶
添加到运行跟踪中的标签。
metadata class-attribute instance-attribute ¶
添加到运行跟踪中的元数据。
custom_get_token_ids class-attribute instance-attribute ¶
用于计算 token 的可选编码器。
model_name class-attribute instance-attribute ¶
要使用的模型名称
number_of_results class-attribute instance-attribute ¶
一次查询返回的结果数量
project class-attribute instance-attribute ¶
Google Cloud 项目
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke async ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> str
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch async ¶
abatch(
inputs: list[LanguageModelInput],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any,
) -> list[str]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed async ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[str]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream async ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[str]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log async ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events async ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform async ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
is_lc_serializable classmethod ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace classmethod ¶
lc_id classmethod ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt async ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
with_structured_output ¶
with_structured_output(
schema: dict | type, **kwargs: Any
) -> Runnable[LanguageModelInput, dict | BaseModel]
此类未实现。
get_token_ids ¶
get_num_tokens ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
向模型传递一系列提示并返回生成结果。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
字符串提示列表。 |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要与每个提示关联的标签列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
metadata
|
要与每个提示关联的元数据字典列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
运行名称
|
要与每个提示关联的运行名称列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
run_id
|
要与每个提示关联的运行 ID 列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果提示不是列表。 |
ValueError
|
如果 `callbacks`、`tags`、`metadata` 或 `run_name`(如果提供)的长度与提示的长度不匹配。 |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate async ¶
agenerate(
prompts: list[str],
stop: list[str] | None = None,
callbacks: Callbacks | list[Callbacks] | None = None,
*,
tags: list[str] | list[list[str]] | None = None,
metadata: dict[str, Any] | list[dict[str, Any]] | None = None,
run_name: str | list[str] | None = None,
run_id: UUID | list[UUID | None] | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
字符串提示列表。 |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要与每个提示关联的标签列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
metadata
|
要与每个提示关联的元数据字典列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
运行名称
|
要与每个提示关联的运行名称列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
run_id
|
要与每个提示关联的运行 ID 列表。如果提供,列表的长度必须与提示列表的长度匹配。 |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果 `callbacks`、`tags`、`metadata` 或 `run_name`(如果提供)的长度与提示的长度不匹配。 |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
VertexAIImageCaptioningChat ¶
基类:_BaseVertexAIImageCaptioning, BaseChatModel
作为聊天实现的图像字幕模型。
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
__init__ |
|
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 LangChain 对象的命名空间。 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
with_structured_output |
返回与给定模式匹配的格式化输出的模型包装器。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
dict |
返回 LLM 的字典。 |
bind_tools |
将工具绑定到模型。 |
lc_secrets property ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache class-attribute instance-attribute ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose class-attribute instance-attribute ¶
是否打印响应文本。
callbacks class-attribute instance-attribute ¶
callbacks: Callbacks = Field(default=None, exclude=True)
添加到运行跟踪中的回调。
tags class-attribute instance-attribute ¶
添加到运行跟踪中的标签。
metadata class-attribute instance-attribute ¶
添加到运行跟踪中的元数据。
custom_get_token_ids class-attribute instance-attribute ¶
用于计算 token 的可选编码器。
rate_limiter class-attribute instance-attribute ¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)
一个可选的速率限制器,用于限制请求数量。
disable_streaming class-attribute instance-attribute ¶
是否为此模型禁用流式传输。
如果绕过流式传输,则 stream/astream/astream_events 将转而调用 invoke/ainvoke。
- 如果为
True,将始终绕过流式传输情况。 - 如果为
'tool_calling',仅当模型被调用时带有tools关键字参数时,才会绕过流式传输情况。换句话说,仅当提供 tools 参数时,LangChain 才会自动切换到非流式行为 (invoke)。这提供了两全其美的方案。 - 如果为
False(默认值),则在可用时始终使用流式传输情况。
此标志的主要原因是,代码可能是使用 stream 编写的,而用户可能希望将给定模型换成另一个实现不完全支持流式传输的模型。
output_version class-attribute instance-attribute ¶
要存储在消息内容中的 AIMessage 输出格式的版本。
AIMessage.content_blocks 将懒解析 content 的内容为标准格式。此标志可用于额外将标准格式存储在消息内容中,例如,用于序列化目的。
支持的值
'v0':内容中特定于提供商的格式(可以使用content_blocks进行懒解析)'v1':内容中的标准化格式(与content_blocks一致)
合作伙伴包(例如 langchain-openai)也可以使用此字段以向后兼容的方式推出新的内容格式。
在版本 1.0 中添加
profile property ¶
返回模型的性能分析信息。
此属性将依赖于 langchain-model-profiles 包来检索聊天模型的能力,例如上下文窗口大小和支持的功能。
| 引发 | 描述 |
|---|---|
ImportError
|
如果未安装 |
| 返回 | 描述 |
|---|---|
ModelProfile
|
一个 |
model_name class-attribute instance-attribute ¶
要使用的模型名称
number_of_results class-attribute instance-attribute ¶
一次查询返回的结果数量
project class-attribute instance-attribute ¶
Google Cloud 项目
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke async ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch async ¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed async ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[AIMessageChunk]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream async ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[AIMessageChunk]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log async ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events async ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform async ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
is_lc_serializable classmethod ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace classmethod ¶
lc_id classmethod ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt async ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
with_structured_output ¶
with_structured_output(
schema: Dict | type, *, include_raw: bool = False, **kwargs: Any
) -> Runnable[LanguageModelInput, Dict | BaseModel]
返回与给定模式匹配的格式化输出的模型包装器。
| 参数 | 描述 |
|---|---|
模式
|
输出模式。可以作为以下形式传入:
如果 有关在指定 Pydantic 或 |
包含原始数据
|
如果为 最终输出总是一个带有键
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果有任何不支持的 |
NotImplementedError
|
如果模型没有实现 |
| 返回 | 描述 |
|---|---|
Runnable[LanguageModelInput, Dict | BaseModel]
|
一个接受与 如果
|
示例:Pydantic 模式 (include_raw=False)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(AnswerWithJustification)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
示例:Pydantic 模式 (include_raw=True)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
示例:dict 模式 (include_raw=False)
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(dict_schema)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
行为在 0.2.26 版本中已更改
添加了对 TypedDict 类的支持。
get_token_ids ¶
get_num_tokens ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate async ¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
VertexAIImageEditorChat ¶
基类:_BaseVertexAIImageGenerator, BaseChatModel
给定一张图片和一个提示,编辑该图片。目前仅支持无蒙版编辑。
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
__init__ |
|
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 LangChain 对象的命名空间。 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
with_structured_output |
返回与给定模式匹配的格式化输出的模型包装器。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
dict |
返回 LLM 的字典。 |
bind_tools |
将工具绑定到模型。 |
lc_secrets property ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache class-attribute instance-attribute ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose class-attribute instance-attribute ¶
是否打印响应文本。
callbacks class-attribute instance-attribute ¶
callbacks: Callbacks = Field(default=None, exclude=True)
添加到运行跟踪中的回调。
tags class-attribute instance-attribute ¶
添加到运行跟踪中的标签。
metadata class-attribute instance-attribute ¶
添加到运行跟踪中的元数据。
custom_get_token_ids class-attribute instance-attribute ¶
用于计算 token 的可选编码器。
rate_limiter class-attribute instance-attribute ¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)
一个可选的速率限制器,用于限制请求数量。
disable_streaming class-attribute instance-attribute ¶
是否为此模型禁用流式传输。
如果绕过流式传输,则 stream/astream/astream_events 将转而调用 invoke/ainvoke。
- 如果为
True,将始终绕过流式传输情况。 - 如果为
'tool_calling',仅当模型被调用时带有tools关键字参数时,才会绕过流式传输情况。换句话说,仅当提供 tools 参数时,LangChain 才会自动切换到非流式行为 (invoke)。这提供了两全其美的方案。 - 如果为
False(默认值),则在可用时始终使用流式传输情况。
此标志的主要原因是,代码可能是使用 stream 编写的,而用户可能希望将给定模型换成另一个实现不完全支持流式传输的模型。
output_version class-attribute instance-attribute ¶
要存储在消息内容中的 AIMessage 输出格式的版本。
AIMessage.content_blocks 将懒解析 content 的内容为标准格式。此标志可用于额外将标准格式存储在消息内容中,例如,用于序列化目的。
支持的值
'v0':内容中特定于提供商的格式(可以使用content_blocks进行懒解析)'v1':内容中的标准化格式(与content_blocks一致)
合作伙伴包(例如 langchain-openai)也可以使用此字段以向后兼容的方式推出新的内容格式。
在版本 1.0 中添加
profile property ¶
返回模型的性能分析信息。
此属性将依赖于 langchain-model-profiles 包来检索聊天模型的能力,例如上下文窗口大小和支持的功能。
| 引发 | 描述 |
|---|---|
ImportError
|
如果未安装 |
| 返回 | 描述 |
|---|---|
ModelProfile
|
一个 |
model_name class-attribute instance-attribute ¶
基础模型的名称
negative_prompt class-attribute instance-attribute ¶
描述你希望在生成的图像中省略的内容
number_of_results class-attribute instance-attribute ¶
要生成的图像数量
guidance_scale class-attribute instance-attribute ¶
控制提示的强度
language class-attribute instance-attribute ¶
图像文本提示的语言。支持的值为“en”(英语)、“hi”(印地语)、“ja”(日语)、“ko”(韩语)和“auto”(自动语言检测)
project class-attribute instance-attribute ¶
Google Cloud 项目 ID
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke async ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch async ¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed async ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[AIMessageChunk]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream async ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[AIMessageChunk]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log async ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events async ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform async ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
is_lc_serializable classmethod ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace classmethod ¶
lc_id classmethod ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt async ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
with_structured_output ¶
with_structured_output(
schema: Dict | type, *, include_raw: bool = False, **kwargs: Any
) -> Runnable[LanguageModelInput, Dict | BaseModel]
返回与给定模式匹配的格式化输出的模型包装器。
| 参数 | 描述 |
|---|---|
模式
|
输出模式。可以作为以下形式传入:
如果 有关在指定 Pydantic 或 |
包含原始数据
|
如果为 最终输出总是一个带有键
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果有任何不支持的 |
NotImplementedError
|
如果模型没有实现 |
| 返回 | 描述 |
|---|---|
Runnable[LanguageModelInput, Dict | BaseModel]
|
一个接受与 如果
|
示例:Pydantic 模式 (include_raw=False)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(AnswerWithJustification)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
示例:Pydantic 模式 (include_raw=True)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
示例:dict 模式 (include_raw=False)
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(dict_schema)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
行为在 0.2.26 版本中已更改
添加了对 TypedDict 类的支持。
get_token_ids ¶
get_num_tokens ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate async ¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
VertexAIImageGeneratorChat ¶
基类:_BaseVertexAIImageGenerator, BaseChatModel
根据提示生成图像。
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
__init__ |
|
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 LangChain 对象的命名空间。 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
with_structured_output |
返回与给定模式匹配的格式化输出的模型包装器。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
dict |
返回 LLM 的字典。 |
bind_tools |
将工具绑定到模型。 |
lc_secrets 属性 ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache 类属性 实例属性 ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose 类属性 实例属性 ¶
是否打印响应文本。
metadata 类属性 实例属性 ¶
添加到运行跟踪中的元数据。
custom_get_token_ids 类属性 实例属性 ¶
用于计算 token 的可选编码器。
rate_limiter 类属性 实例属性 ¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)
一个可选的速率限制器,用于限制请求数量。
disable_streaming 类属性 实例属性 ¶
是否为此模型禁用流式传输。
如果绕过流式传输,则 stream/astream/astream_events 将转而调用 invoke/ainvoke。
- 如果为
True,将始终绕过流式传输情况。 - 如果为
'tool_calling',仅当模型被调用时带有tools关键字参数时,才会绕过流式传输情况。换句话说,仅当提供 tools 参数时,LangChain 才会自动切换到非流式行为 (invoke)。这提供了两全其美的方案。 - 如果为
False(默认值),则在可用时始终使用流式传输情况。
此标志的主要原因是,代码可能是使用 stream 编写的,而用户可能希望将给定模型换成另一个实现不完全支持流式传输的模型。
output_version 类属性 实例属性 ¶
要存储在消息内容中的 AIMessage 输出格式的版本。
AIMessage.content_blocks 将懒解析 content 的内容为标准格式。此标志可用于额外将标准格式存储在消息内容中,例如,用于序列化目的。
支持的值
'v0':内容中特定于提供商的格式(可以使用content_blocks进行懒解析)'v1':内容中的标准化格式(与content_blocks一致)
合作伙伴包(例如 langchain-openai)也可以使用此字段以向后兼容的方式推出新的内容格式。
在版本 1.0 中添加
profile 属性 ¶
返回模型的性能分析信息。
此属性将依赖于 langchain-model-profiles 包来检索聊天模型的能力,例如上下文窗口大小和支持的功能。
| 引发 | 描述 |
|---|---|
ImportError
|
如果未安装 |
| 返回 | 描述 |
|---|---|
ModelProfile
|
一个 |
language 类属性 实例属性 ¶
图像文本提示的语言。支持的值为“en”(英语)、“hi”(印地语)、“ja”(日语)、“ko”(韩语)和“auto”(自动语言检测)
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke 异步 ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch 异步 ¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed 异步 ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[AIMessageChunk]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream 异步 ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[AIMessageChunk]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log 异步 ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events 异步 ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform 异步 ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
is_lc_serializable 类方法 ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace 类方法 ¶
lc_id 类方法 ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt 异步 ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
with_structured_output ¶
with_structured_output(
schema: Dict | type, *, include_raw: bool = False, **kwargs: Any
) -> Runnable[LanguageModelInput, Dict | BaseModel]
返回与给定模式匹配的格式化输出的模型包装器。
| 参数 | 描述 |
|---|---|
模式
|
输出模式。可以作为以下形式传入:
如果 有关在指定 Pydantic 或 |
包含原始数据
|
如果为 最终输出总是一个带有键
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果有任何不支持的 |
NotImplementedError
|
如果模型没有实现 |
| 返回 | 描述 |
|---|---|
Runnable[LanguageModelInput, Dict | BaseModel]
|
一个接受与 如果
|
示例:Pydantic 模式 (include_raw=False)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(AnswerWithJustification)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
示例:Pydantic 模式 (include_raw=True)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
示例:dict 模式 (include_raw=False)
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(dict_schema)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
行为在 0.2.26 版本中已更改
添加了对 TypedDict 类的支持。
get_token_ids ¶
get_num_tokens ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate 异步 ¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
VertexAIVisualQnAChat ¶
基类:_BaseImageTextModel, BaseChatModel
视觉问答模型的聊天实现。
| 方法 | 描述 |
|---|---|
get_name |
获取 |
get_input_schema |
获取可用于验证 |
get_input_jsonschema |
获取表示 |
get_output_schema |
获取可用于验证 |
get_output_jsonschema |
获取表示 |
config_schema |
此 |
get_config_jsonschema |
获取表示 |
get_graph |
返回此 |
get_prompts |
返回此 |
__or__ |
Runnable "or" 运算符。 |
__ror__ |
Runnable "reverse-or" 运算符。 |
pipe |
管道连接 |
pick |
从此 |
assign |
向此 |
invoke |
将单个输入转换为输出。 |
ainvoke |
将单个输入转换为输出。 |
batch |
默认实现使用线程池执行器并行运行 invoke。 |
batch_as_completed |
在输入列表上并行运行 |
abatch |
默认实现使用 |
abatch_as_completed |
在输入列表上并行运行 |
stream |
|
astream |
|
astream_log |
流式传输 |
astream_events |
生成事件流。 |
transform |
将输入转换为输出。 |
atransform |
将输入转换为输出。 |
bind |
将参数绑定到 |
with_config |
将配置绑定到 |
with_listeners |
将生命周期侦听器绑定到 |
with_alisteners |
将异步生命周期侦听器绑定到 |
with_types |
将输入和输出类型绑定到 |
with_retry |
创建一个新的 |
map |
返回一个新的 |
with_fallbacks |
向 |
as_tool |
从 |
__init__ |
|
is_lc_serializable |
这个类是否可序列化? |
get_lc_namespace |
获取 LangChain 对象的命名空间。 |
lc_id |
为此类返回一个用于序列化目的的唯一标识符。 |
to_json |
将 |
to_json_not_implemented |
序列化一个“未实现”的对象。 |
configurable_fields |
在运行时配置特定的 |
configurable_alternatives |
为可在运行时设置的 |
set_verbose |
如果 verbose 是 |
generate_prompt |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate_prompt |
异步地将一系列提示传递并返回模型生成的内容。 |
with_structured_output |
返回与给定模式匹配的格式化输出的模型包装器。 |
get_token_ids |
返回文本中 token 的有序 ID。 |
get_num_tokens |
获取文本中存在的 token 数量。 |
get_num_tokens_from_messages |
获取消息中的 token 数量。 |
generate |
将一系列提示传递给模型并返回模型生成的内容。 |
agenerate |
异步地将一系列提示传递给模型并返回生成的内容。 |
dict |
返回 LLM 的字典。 |
bind_tools |
将工具绑定到模型。 |
lc_secrets 属性 ¶
构造函数参数名称到密钥 ID 的映射。
例如,{"openai_api_key": "OPENAI_API_KEY"}
cache 类属性 实例属性 ¶
是否缓存响应。
- 如果为
True,将使用全局缓存。 - 如果为
False,将不使用缓存 - 如果为
None,如果设置了全局缓存,则使用全局缓存,否则不使用缓存。 - 如果是
BaseCache的实例,将使用提供的缓存。
目前不支持模型的流式方法的缓存。
verbose 类属性 实例属性 ¶
是否打印响应文本。
metadata 类属性 实例属性 ¶
添加到运行跟踪中的元数据。
custom_get_token_ids 类属性 实例属性 ¶
用于计算 token 的可选编码器。
rate_limiter 类属性 实例属性 ¶
rate_limiter: BaseRateLimiter | None = Field(default=None, exclude=True)
一个可选的速率限制器,用于限制请求数量。
disable_streaming 类属性 实例属性 ¶
是否为此模型禁用流式传输。
如果绕过流式传输,则 stream/astream/astream_events 将转而调用 invoke/ainvoke。
- 如果为
True,将始终绕过流式传输情况。 - 如果为
'tool_calling',仅当模型被调用时带有tools关键字参数时,才会绕过流式传输情况。换句话说,仅当提供 tools 参数时,LangChain 才会自动切换到非流式行为 (invoke)。这提供了两全其美的方案。 - 如果为
False(默认值),则在可用时始终使用流式传输情况。
此标志的主要原因是,代码可能是使用 stream 编写的,而用户可能希望将给定模型换成另一个实现不完全支持流式传输的模型。
output_version 类属性 实例属性 ¶
要存储在消息内容中的 AIMessage 输出格式的版本。
AIMessage.content_blocks 将懒解析 content 的内容为标准格式。此标志可用于额外将标准格式存储在消息内容中,例如,用于序列化目的。
支持的值
'v0':内容中特定于提供商的格式(可以使用content_blocks进行懒解析)'v1':内容中的标准化格式(与content_blocks一致)
合作伙伴包(例如 langchain-openai)也可以使用此字段以向后兼容的方式推出新的内容格式。
在版本 1.0 中添加
profile 属性 ¶
返回模型的性能分析信息。
此属性将依赖于 langchain-model-profiles 包来检索聊天模型的能力,例如上下文窗口大小和支持的功能。
| 引发 | 描述 |
|---|---|
ImportError
|
如果未安装 |
| 返回 | 描述 |
|---|---|
ModelProfile
|
一个 |
get_name ¶
get_input_schema ¶
get_input_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输入的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输入模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输入模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输入的 Pydantic 模型。 |
get_input_jsonschema ¶
get_input_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输入的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
get_output_schema ¶
get_output_schema(config: RunnableConfig | None = None) -> type[BaseModel]
获取可用于验证 Runnable 输出的 Pydantic 模型。
利用 configurable_fields 和 configurable_alternatives 方法的 Runnable 对象将具有一个动态输出模式,该模式取决于调用 Runnable 时使用的配置。
此方法允许获取特定配置的输出模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
type[BaseModel]
|
一个可用于验证输出的 Pydantic 模型。 |
get_output_jsonschema ¶
get_output_jsonschema(config: RunnableConfig | None = None) -> dict[str, Any]
获取表示 Runnable 输出的 JSON 模式。
| 参数 | 描述 |
|---|---|
配置
|
生成模式时使用的配置。
类型: |
| 返回 | 描述 |
|---|---|
dict[str, Any]
|
表示 |
示例
在 0.3.0 版本中新增。
config_schema ¶
get_config_jsonschema ¶
get_prompts ¶
get_prompts(config: RunnableConfig | None = None) -> list[BasePromptTemplate]
返回此 Runnable 使用的提示列表。
__or__ ¶
__or__(
other: Runnable[Any, Other]
| Callable[[Iterator[Any]], Iterator[Other]]
| Callable[[AsyncIterator[Any]], AsyncIterator[Other]]
| Callable[[Any], Other]
| Mapping[str, Runnable[Any, Other] | Callable[[Any], Other] | Any],
) -> RunnableSerializable[Input, Other]
Runnable "or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
__ror__ ¶
__ror__(
other: Runnable[Other, Any]
| Callable[[Iterator[Other]], Iterator[Any]]
| Callable[[AsyncIterator[Other]], AsyncIterator[Any]]
| Callable[[Other], Any]
| Mapping[str, Runnable[Other, Any] | Callable[[Other], Any] | Any],
) -> RunnableSerializable[Other, Output]
Runnable "reverse-or" 运算符。
将此 Runnable 与另一个对象组合以创建 RunnableSequence。
| 参数 | 描述 |
|---|---|
other
|
另一个
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Other, Output]
|
一个新的 |
pipe ¶
pipe(
*others: Runnable[Any, Other] | Callable[[Any], Other], name: str | None = None
) -> RunnableSerializable[Input, Other]
管道连接 Runnable 对象。
将此 Runnable 与类 Runnable 对象组合以构成一个 RunnableSequence。
等同于 RunnableSequence(self, *others) 或 self | others[0] | ...
示例
from langchain_core.runnables import RunnableLambda
def add_one(x: int) -> int:
return x + 1
def mul_two(x: int) -> int:
return x * 2
runnable_1 = RunnableLambda(add_one)
runnable_2 = RunnableLambda(mul_two)
sequence = runnable_1.pipe(runnable_2)
# Or equivalently:
# sequence = runnable_1 | runnable_2
# sequence = RunnableSequence(first=runnable_1, last=runnable_2)
sequence.invoke(1)
await sequence.ainvoke(1)
# -> 4
sequence.batch([1, 2, 3])
await sequence.abatch([1, 2, 3])
# -> [4, 6, 8]
| 参数 | 描述 |
|---|---|
*其他
|
其他要组合的 |
name
|
生成的
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Other]
|
一个新的 |
pick ¶
从此 Runnable 的输出 dict 中选择键。
选择单个键
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
chain = RunnableMap(str=as_str, json=as_json)
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3]}
json_only_chain = chain.pick("json")
json_only_chain.invoke("[1, 2, 3]")
# -> [1, 2, 3]
选择键列表
from typing import Any
import json
from langchain_core.runnables import RunnableLambda, RunnableMap
as_str = RunnableLambda(str)
as_json = RunnableLambda(json.loads)
def as_bytes(x: Any) -> bytes:
return bytes(x, "utf-8")
chain = RunnableMap(str=as_str, json=as_json, bytes=RunnableLambda(as_bytes))
chain.invoke("[1, 2, 3]")
# -> {"str": "[1, 2, 3]", "json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
json_and_bytes_chain = chain.pick(["json", "bytes"])
json_and_bytes_chain.invoke("[1, 2, 3]")
# -> {"json": [1, 2, 3], "bytes": b"[1, 2, 3]"}
| 参数 | 描述 |
|---|---|
keys
|
从输出字典中选择的一个键或键列表。 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
assign ¶
assign(
**kwargs: Runnable[dict[str, Any], Any]
| Callable[[dict[str, Any]], Any]
| Mapping[str, Runnable[dict[str, Any], Any] | Callable[[dict[str, Any]], Any]],
) -> RunnableSerializable[Any, Any]
向此 Runnable 的 dict 输出分配新字段。
from langchain_community.llms.fake import FakeStreamingListLLM
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import SystemMessagePromptTemplate
from langchain_core.runnables import Runnable
from operator import itemgetter
prompt = (
SystemMessagePromptTemplate.from_template("You are a nice assistant.")
+ "{question}"
)
model = FakeStreamingListLLM(responses=["foo-lish"])
chain: Runnable = prompt | model | {"str": StrOutputParser()}
chain_with_assign = chain.assign(hello=itemgetter("str") | model)
print(chain_with_assign.input_schema.model_json_schema())
# {'title': 'PromptInput', 'type': 'object', 'properties':
{'question': {'title': 'Question', 'type': 'string'}}}
print(chain_with_assign.output_schema.model_json_schema())
# {'title': 'RunnableSequenceOutput', 'type': 'object', 'properties':
{'str': {'title': 'Str',
'type': 'string'}, 'hello': {'title': 'Hello', 'type': 'string'}}}
| 参数 | 描述 |
|---|---|
**kwargs
|
一个键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Any, Any]
|
一个新的 |
invoke ¶
invoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
ainvoke 异步 ¶
ainvoke(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AIMessage
将单个输入转换为输出。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
调用
类型: |
| 返回 | 描述 |
|---|---|
输出
|
|
batch ¶
batch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用线程池执行器并行运行 invoke。
批处理的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
batch_as_completed ¶
batch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> Iterator[tuple[int, Output | Exception]]
在输入列表上并行运行 invoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
tuple[int, Output | Exception]
|
由输入索引和 |
abatch 异步 ¶
abatch(
inputs: list[Input],
config: RunnableConfig | list[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> list[Output]
默认实现使用 asyncio.gather 并行运行 ainvoke。
batch 的默认实现对于 IO 密集型的 runnable 效果很好。
如果子类能够更有效地进行批处理,则必须重写此方法;例如,如果底层的 Runnable 使用支持批处理模式的 API。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
list[Output]
|
来自 |
abatch_as_completed 异步 ¶
abatch_as_completed(
inputs: Sequence[Input],
config: RunnableConfig | Sequence[RunnableConfig] | None = None,
*,
return_exceptions: bool = False,
**kwargs: Any | None,
) -> AsyncIterator[tuple[int, Output | Exception]]
在输入列表上并行运行 ainvoke。
在结果完成时生成它们。
| 参数 | 描述 |
|---|---|
inputs
|
类型: |
配置
|
调用
类型: |
返回异常
|
是否返回异常而不是引发它们。
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[tuple[int, Output | Exception]]
|
一个由输入索引和 |
stream ¶
stream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> Iterator[AIMessageChunk]
stream 的默认实现,它调用 invoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
astream 异步 ¶
astream(
input: LanguageModelInput,
config: RunnableConfig | None = None,
*,
stop: list[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[AIMessageChunk]
astream 的默认实现,它调用 ainvoke。
如果子类支持流式输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
astream_log 异步 ¶
astream_log(
input: Any,
config: RunnableConfig | None = None,
*,
diff: bool = True,
with_streamed_output_list: bool = True,
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
流式传输 Runnable 的所有输出,如回调系统所报告。
这包括 LLM、检索器、工具等的所有内部运行。
输出以 Log 对象的形式流式传输,其中包括一个 Jsonpatch 操作列表,描述了运行状态在每一步中如何变化,以及运行的最终状态。
可以按顺序应用 Jsonpatch 操作来构造状态。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
差异
|
是生成每一步之间的差异还是当前状态。
类型: |
带流式输出列表
|
是否生成
类型: |
包含名称
|
仅包含具有这些名称的日志。 |
包含类型
|
仅包含具有这些类型的日志。 |
包含标签
|
仅包含具有这些标签的日志。 |
排除名称
|
排除具有这些名称的日志。 |
排除类型
|
排除具有这些类型的日志。 |
排除标签
|
排除具有这些标签的日志。 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[RunLogPatch] | AsyncIterator[RunLog]
|
一个 |
astream_events 异步 ¶
astream_events(
input: Any,
config: RunnableConfig | None = None,
*,
version: Literal["v1", "v2"] = "v2",
include_names: Sequence[str] | None = None,
include_types: Sequence[str] | None = None,
include_tags: Sequence[str] | None = None,
exclude_names: Sequence[str] | None = None,
exclude_types: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
**kwargs: Any,
) -> AsyncIterator[StreamEvent]
生成事件流。
用于创建一个 StreamEvent 的迭代器,提供有关 Runnable 进度的实时信息,包括来自中间结果的 StreamEvent。
一个 StreamEvent 是一个具有以下模式的字典
event:事件名称的格式为:on_[runnable_type]_(start|stream|end)。name:生成事件的Runnable的名称。run_id:与发出事件的Runnable的给定执行相关联的随机生成的 ID。作为父Runnable执行的一部分被调用的子Runnable被分配其自己的唯一 ID。parent_ids:生成事件的父可运行对象的 ID。根Runnable将有一个空列表。父 ID 的顺序是从根到直接父级。仅适用于 API 的 v2 版本。API 的 v1 版本将返回一个空列表。tags:生成事件的Runnable的标签。metadata:生成事件的Runnable的元数据。data:与事件关联的数据。此字段的内容取决于事件的类型。有关更多详细信息,请参见下表。
下表说明了各种链可能发出的某些事件。为简洁起见,已从表中省略了元数据字段。链定义已包含在表之后。
注意
此参考表适用于模式的 v2 版本。
| 事件 | name | chunk | 输入 | output |
|---|---|---|---|---|
on_chat_model_start |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
||
on_chat_model_stream |
'[model name]' |
AIMessageChunk(content="hello") |
||
on_chat_model_end |
'[model name]' |
{"messages": [[SystemMessage, HumanMessage]]} |
AIMessageChunk(content="hello world") |
|
on_llm_start |
'[model name]' |
{'input': 'hello'} |
||
on_llm_stream |
'[model name]' |
'你好' |
||
on_llm_end |
'[model name]' |
'你好,人类!' |
||
on_chain_start |
'format_docs' |
|||
on_chain_stream |
'format_docs' |
'hello world!, goodbye world!' |
||
on_chain_end |
'format_docs' |
[Document(...)] |
'hello world!, goodbye world!' |
|
on_tool_start |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_tool_end |
'some_tool' |
{"x": 1, "y": "2"} |
||
on_retriever_start |
'[retriever name]' |
{"query": "hello"} |
||
on_retriever_end |
'[retriever name]' |
{"query": "hello"} |
[Document(...), ..] |
|
on_prompt_start |
'[template_name]' |
{"question": "hello"} |
||
on_prompt_end |
'[template_name]' |
{"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
除了标准事件外,用户还可以分派自定义事件(见下例)。
自定义事件将仅在 API 的 v2 版本中出现!
自定义事件具有以下格式
| 属性 | 类型 | 描述 |
|---|---|---|
name |
str |
用户为事件定义的名称。 |
data |
任意 |
与事件关联的数据。这可以是任何东西,但我们建议使其可 JSON 序列化。 |
以下是与上面显示的标准事件相关的声明
format_docs:
def format_docs(docs: list[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
some_tool:
prompt:
template = ChatPromptTemplate.from_messages(
[
("system", "You are Cat Agent 007"),
("human", "{question}"),
]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
例如
from langchain_core.runnables import RunnableLambda
async def reverse(s: str) -> str:
return s[::-1]
chain = RunnableLambda(func=reverse)
events = [event async for event in chain.astream_events("hello", version="v2")]
# Will produce the following events
# (run_id, and parent_ids has been omitted for brevity):
[
{
"data": {"input": "hello"},
"event": "on_chain_start",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"chunk": "olleh"},
"event": "on_chain_stream",
"metadata": {},
"name": "reverse",
"tags": [],
},
{
"data": {"output": "olleh"},
"event": "on_chain_end",
"metadata": {},
"name": "reverse",
"tags": [],
},
]
from langchain_core.callbacks.manager import (
adispatch_custom_event,
)
from langchain_core.runnables import RunnableLambda, RunnableConfig
import asyncio
async def slow_thing(some_input: str, config: RunnableConfig) -> str:
"""Do something that takes a long time."""
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 1 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
await adispatch_custom_event(
"progress_event",
{"message": "Finished step 2 of 3"},
config=config # Must be included for python < 3.10
)
await asyncio.sleep(1) # Placeholder for some slow operation
return "Done"
slow_thing = RunnableLambda(slow_thing)
async for event in slow_thing.astream_events("some_input", version="v2"):
print(event)
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
版本
|
要使用的模式版本,可以是
类型: |
包含名称
|
仅包括来自具有匹配名称的 |
包含类型
|
仅包括来自具有匹配类型的 |
包含标签
|
仅包括来自具有匹配标签的 |
排除名称
|
排除来自具有匹配名称的 |
排除类型
|
排除来自具有匹配类型的 |
排除标签
|
排除来自具有匹配标签的 |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[StreamEvent]
|
|
| 引发 | 描述 |
|---|---|
NotImplementedError
|
如果版本不是 |
transform ¶
transform(
input: Iterator[Input], config: RunnableConfig | None = None, **kwargs: Any | None
) -> Iterator[Output]
将输入转换为输出。
transform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
输出
|
|
atransform 异步 ¶
atransform(
input: AsyncIterator[Input],
config: RunnableConfig | None = None,
**kwargs: Any | None,
) -> AsyncIterator[Output]
将输入转换为输出。
atransform 的默认实现,它缓冲输入并调用 astream。
如果子类可以在输入仍在生成时开始产生输出,则必须重写此方法。
| 参数 | 描述 |
|---|---|
输入
|
类型: |
配置
|
用于
类型: |
**kwargs
|
要传递给
类型: |
| YIELDS | 描述 |
|---|---|
AsyncIterator[Output]
|
|
bind ¶
将参数绑定到 Runnable,返回一个新的 Runnable。
当链中的 Runnable 需要一个不在前一个 Runnable 的输出中或未包含在用户输入中的参数时非常有用。
| 参数 | 描述 |
|---|---|
**kwargs
|
要绑定到
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了参数的新 |
示例
from langchain_ollama import ChatOllama
from langchain_core.output_parsers import StrOutputParser
model = ChatOllama(model="llama3.1")
# Without bind
chain = model | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two three four five.'
# With bind
chain = model.bind(stop=["three"]) | StrOutputParser()
chain.invoke("Repeat quoted words exactly: 'One two three four five.'")
# Output is 'One two'
with_config ¶
with_config(
config: RunnableConfig | None = None, **kwargs: Any
) -> Runnable[Input, Output]
将配置绑定到 Runnable,返回一个新的 Runnable。
| 参数 | 描述 |
|---|---|
配置
|
要绑定到
类型: |
**kwargs
|
要传递给
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了配置的新 |
with_listeners ¶
with_listeners(
*,
on_start: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
on_end: Callable[[Run], None] | Callable[[Run, RunnableConfig], None] | None = None,
on_error: Callable[[Run], None]
| Callable[[Run, RunnableConfig], None]
| None = None,
) -> Runnable[Input, Output]
将生命周期侦听器绑定到 Runnable,返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda
from langchain_core.tracers.schemas import Run
import time
def test_runnable(time_to_sleep: int):
time.sleep(time_to_sleep)
def fn_start(run_obj: Run):
print("start_time:", run_obj.start_time)
def fn_end(run_obj: Run):
print("end_time:", run_obj.end_time)
chain = RunnableLambda(test_runnable).with_listeners(
on_start=fn_start, on_end=fn_end
)
chain.invoke(2)
with_alisteners ¶
with_alisteners(
*,
on_start: AsyncListener | None = None,
on_end: AsyncListener | None = None,
on_error: AsyncListener | None = None,
) -> Runnable[Input, Output]
将异步生命周期侦听器绑定到 Runnable。
返回一个新的 Runnable。
Run 对象包含有关运行的信息,包括其 id、type、input、output、error、start_time、end_time 以及添加到运行中的任何标签或元数据。
| 参数 | 描述 |
|---|---|
开始时
|
在
类型: |
结束时
|
在
类型: |
出错时
|
如果
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个绑定了监听器的新 |
示例
from langchain_core.runnables import RunnableLambda, Runnable
from datetime import datetime, timezone
import time
import asyncio
def format_t(timestamp: float) -> str:
return datetime.fromtimestamp(timestamp, tz=timezone.utc).isoformat()
async def test_runnable(time_to_sleep: int):
print(f"Runnable[{time_to_sleep}s]: starts at {format_t(time.time())}")
await asyncio.sleep(time_to_sleep)
print(f"Runnable[{time_to_sleep}s]: ends at {format_t(time.time())}")
async def fn_start(run_obj: Runnable):
print(f"on start callback starts at {format_t(time.time())}")
await asyncio.sleep(3)
print(f"on start callback ends at {format_t(time.time())}")
async def fn_end(run_obj: Runnable):
print(f"on end callback starts at {format_t(time.time())}")
await asyncio.sleep(2)
print(f"on end callback ends at {format_t(time.time())}")
runnable = RunnableLambda(test_runnable).with_alisteners(
on_start=fn_start,
on_end=fn_end
)
async def concurrent_runs():
await asyncio.gather(runnable.ainvoke(2), runnable.ainvoke(3))
asyncio.run(concurrent_runs())
Result:
on start callback starts at 2025-03-01T07:05:22.875378+00:00
on start callback starts at 2025-03-01T07:05:22.875495+00:00
on start callback ends at 2025-03-01T07:05:25.878862+00:00
on start callback ends at 2025-03-01T07:05:25.878947+00:00
Runnable[2s]: starts at 2025-03-01T07:05:25.879392+00:00
Runnable[3s]: starts at 2025-03-01T07:05:25.879804+00:00
Runnable[2s]: ends at 2025-03-01T07:05:27.881998+00:00
on end callback starts at 2025-03-01T07:05:27.882360+00:00
Runnable[3s]: ends at 2025-03-01T07:05:28.881737+00:00
on end callback starts at 2025-03-01T07:05:28.882428+00:00
on end callback ends at 2025-03-01T07:05:29.883893+00:00
on end callback ends at 2025-03-01T07:05:30.884831+00:00
with_types ¶
with_retry ¶
with_retry(
*,
retry_if_exception_type: tuple[type[BaseException], ...] = (Exception,),
wait_exponential_jitter: bool = True,
exponential_jitter_params: ExponentialJitterParams | None = None,
stop_after_attempt: int = 3,
) -> Runnable[Input, Output]
创建一个新的 Runnable,它在发生异常时重试原始的 Runnable。
| 参数 | 描述 |
|---|---|
如果异常类型则重试
|
一个用于重试的异常类型元组。
类型: |
指数等待抖动
|
是否在两次重试之间的等待时间中添加抖动。
类型: |
尝试后停止
|
放弃前尝试的最大次数。
类型: |
指数抖动参数
|
类型: |
| 返回 | 描述 |
|---|---|
Runnable[Input, Output]
|
一个新的 Runnable,它会在发生异常时重试原始的 Runnable。 |
示例
from langchain_core.runnables import RunnableLambda
count = 0
def _lambda(x: int) -> None:
global count
count = count + 1
if x == 1:
raise ValueError("x is 1")
else:
pass
runnable = RunnableLambda(_lambda)
try:
runnable.with_retry(
stop_after_attempt=2,
retry_if_exception_type=(ValueError,),
).invoke(1)
except ValueError:
pass
assert count == 2
map ¶
with_fallbacks ¶
with_fallbacks(
fallbacks: Sequence[Runnable[Input, Output]],
*,
exceptions_to_handle: tuple[type[BaseException], ...] = (Exception,),
exception_key: str | None = None,
) -> RunnableWithFallbacks[Input, Output]
向 Runnable 添加回退机制,返回一个新的 Runnable。
新的 Runnable 将在失败时先尝试原始的 Runnable,然后按顺序尝试每个备选方案。
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
示例
from typing import Iterator
from langchain_core.runnables import RunnableGenerator
def _generate_immediate_error(input: Iterator) -> Iterator[str]:
raise ValueError()
yield ""
def _generate(input: Iterator) -> Iterator[str]:
yield from "foo bar"
runnable = RunnableGenerator(_generate_immediate_error).with_fallbacks(
[RunnableGenerator(_generate)]
)
print("".join(runnable.stream({}))) # foo bar
| 参数 | 描述 |
|---|---|
备用方案
|
如果原始 |
要处理的异常
|
一个要处理的异常类型元组。
类型: |
异常键
|
如果指定了
类型: |
| 返回 | 描述 |
|---|---|
RunnableWithFallbacks[Input, Output]
|
一个新的 |
as_tool ¶
as_tool(
args_schema: type[BaseModel] | None = None,
*,
name: str | None = None,
description: str | None = None,
arg_types: dict[str, type] | None = None,
) -> BaseTool
从 Runnable 创建一个 BaseTool。
as_tool 将从一个 Runnable 实例化一个 BaseTool,该工具具有名称、描述和 args_schema。在可能的情况下,模式会从 runnable.get_input_schema 中推断。或者(例如,如果 Runnable 接受一个字典作为输入,并且特定的字典键没有类型),模式可以通过 args_schema 直接指定。你也可以传递 arg_types 来仅指定必需的参数及其类型。
| 参数 | 描述 |
|---|---|
参数模式
|
工具的模式。 |
name
|
工具的名称。
类型: |
描述
|
工具的描述。
类型: |
参数类型
|
一个从参数名称到类型的字典。 |
| 返回 | 描述 |
|---|---|
BaseTool
|
一个 |
类型化字典输入
from typing_extensions import TypedDict
from langchain_core.runnables import RunnableLambda
class Args(TypedDict):
a: int
b: list[int]
def f(x: Args) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool()
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 args_schema 指定模式
from typing import Any
from pydantic import BaseModel, Field
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
class FSchema(BaseModel):
"""Apply a function to an integer and list of integers."""
a: int = Field(..., description="Integer")
b: list[int] = Field(..., description="List of ints")
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(FSchema)
as_tool.invoke({"a": 3, "b": [1, 2]})
dict 输入,通过 arg_types 指定模式
from typing import Any
from langchain_core.runnables import RunnableLambda
def f(x: dict[str, Any]) -> str:
return str(x["a"] * max(x["b"]))
runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"a": int, "b": list[int]})
as_tool.invoke({"a": 3, "b": [1, 2]})
字符串输入
is_lc_serializable 类方法 ¶
is_lc_serializable() -> bool
这个类是否可序列化?
根据设计,即使一个类继承自 Serializable,它默认也是不可序列化的。这是为了防止意外序列化不应被序列化的对象。
| 返回 | 描述 |
|---|---|
bool
|
类是否可序列化。默认为 |
get_lc_namespace 类方法 ¶
lc_id 类方法 ¶
为此类返回一个用于序列化目的的唯一标识符。
唯一标识符是一个描述对象路径的字符串列表。
例如,对于类 langchain.llms.openai.OpenAI,id 是 ["langchain", "llms", "openai", "OpenAI"]。
to_json ¶
将 Runnable 序列化为 JSON。
| 返回 | 描述 |
|---|---|
SerializedConstructor | SerializedNotImplemented
|
一个 |
to_json_not_implemented ¶
序列化一个“未实现”的对象。
| 返回 | 描述 |
|---|---|
SerializedNotImplemented
|
|
configurable_fields ¶
configurable_fields(
**kwargs: AnyConfigurableField,
) -> RunnableSerializable[Input, Output]
在运行时配置特定的 Runnable 字段。
| 参数 | 描述 |
|---|---|
**kwargs
|
一个要配置的
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果在 |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了字段的新 |
from langchain_core.runnables import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatOpenAI(max_tokens=20).configurable_fields(
max_tokens=ConfigurableField(
id="output_token_number",
name="Max tokens in the output",
description="The maximum number of tokens in the output",
)
)
# max_tokens = 20
print("max_tokens_20: ", model.invoke("tell me something about chess").content)
# max_tokens = 200
print(
"max_tokens_200: ",
model.with_config(configurable={"output_token_number": 200})
.invoke("tell me something about chess")
.content,
)
configurable_alternatives ¶
configurable_alternatives(
which: ConfigurableField,
*,
default_key: str = "default",
prefix_keys: bool = False,
**kwargs: Runnable[Input, Output] | Callable[[], Runnable[Input, Output]],
) -> RunnableSerializable[Input, Output]
为可在运行时设置的 Runnable 对象配置备选项。
| 参数 | 描述 |
|---|---|
哪个
|
将用于选择备选项的
类型: |
默认键
|
如果未选择备选项,则使用的默认键。
类型: |
前缀键
|
是否用
类型: |
**kwargs
|
一个从键到
类型: |
| 返回 | 描述 |
|---|---|
RunnableSerializable[Input, Output]
|
一个配置了备选项的新 |
from langchain_anthropic import ChatAnthropic
from langchain_core.runnables.utils import ConfigurableField
from langchain_openai import ChatOpenAI
model = ChatAnthropic(
model_name="claude-sonnet-4-5-20250929"
).configurable_alternatives(
ConfigurableField(id="llm"),
default_key="anthropic",
openai=ChatOpenAI(),
)
# uses the default model ChatAnthropic
print(model.invoke("which organization created you?").content)
# uses ChatOpenAI
print(
model.with_config(configurable={"llm": "openai"})
.invoke("which organization created you?")
.content
)
set_verbose ¶
generate_prompt ¶
generate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate_prompt 异步 ¶
agenerate_prompt(
prompts: list[PromptValue],
stop: list[str] | None = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
prompts
|
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
with_structured_output ¶
with_structured_output(
schema: Dict | type, *, include_raw: bool = False, **kwargs: Any
) -> Runnable[LanguageModelInput, Dict | BaseModel]
返回与给定模式匹配的格式化输出的模型包装器。
| 参数 | 描述 |
|---|---|
模式
|
输出模式。可以作为以下形式传入:
如果 有关在指定 Pydantic 或 |
包含原始数据
|
如果为 最终输出总是一个带有键
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果有任何不支持的 |
NotImplementedError
|
如果模型没有实现 |
| 返回 | 描述 |
|---|---|
Runnable[LanguageModelInput, Dict | BaseModel]
|
一个接受与 如果
|
示例:Pydantic 模式 (include_raw=False)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(AnswerWithJustification)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
# )
示例:Pydantic 模式 (include_raw=True)
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
# 'parsing_error': None
# }
示例:dict 模式 (include_raw=False)
from pydantic import BaseModel
from langchain_core.utils.function_calling import convert_to_openai_tool
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
dict_schema = convert_to_openai_tool(AnswerWithJustification)
model = ChatModel(model="model-name", temperature=0)
structured_model = model.with_structured_output(dict_schema)
structured_model.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
# }
行为在 0.2.26 版本中已更改
添加了对 TypedDict 类的支持。
get_token_ids ¶
get_num_tokens ¶
get_num_tokens_from_messages ¶
get_num_tokens_from_messages(
messages: list[BaseMessage], tools: Sequence | None = None
) -> int
获取消息中的 token 数量。
用于检查输入是否适合模型的上下文窗口。
注意
get_num_tokens_from_messages 的基本实现忽略了工具模式。
| 参数 | 描述 |
|---|---|
messages
|
要进行分词的消息输入。
类型: |
工具
|
如果提供,则为要转换为工具模式的 dict、
类型: |
| 返回 | 描述 |
|---|---|
int
|
所有消息中词元数量的总和。 |
generate ¶
generate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
将一系列提示传递给模型并返回模型生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
agenerate 异步 ¶
agenerate(
messages: list[list[BaseMessage]],
stop: list[str] | None = None,
callbacks: Callbacks = None,
*,
tags: list[str] | None = None,
metadata: dict[str, Any] | None = None,
run_name: str | None = None,
run_id: UUID | None = None,
**kwargs: Any,
) -> LLMResult
异步地将一系列提示传递给模型并返回生成的内容。
对于提供批量 API 的模型,此方法应利用批量调用。
当你想要
- 利用批量调用,
- 需要从模型获得比最高生成值更多的输出,
- 正在构建与底层语言模型类型无关的链(例如,纯文本补全模型与聊天模型)。
| 参数 | 描述 |
|---|---|
messages
|
消息列表的列表。
类型: |
停止
|
生成时使用的停止词。模型输出在首次出现这些子字符串中的任何一个时被截断。 |
回调
|
要传递的
类型: |
tags
|
要应用的标签。 |
metadata
|
要应用的元数据。 |
运行名称
|
运行的名称。
类型: |
run_id
|
运行的 ID。
类型: |
**kwargs
|
任意附加的关键字参数。这些通常会传递给模型提供商的 API 调用。
类型: |
| 返回 | 描述 |
|---|---|
LLMResult
|
一个 |
create_structured_runnable ¶
create_structured_runnable(
function: Type[BaseModel] | Sequence[Type[BaseModel]],
llm: Runnable,
*,
prompt: BasePromptTemplate | None = None,
use_extra_step: bool = False,
) -> Runnable
创建一个使用 OpenAI 函数的可运行序列。
| 参数 | 描述 |
|---|---|
函数
|
可以是单个 `pydantic.BaseModel` 类或 `pydantic.BaseModels` 类的序列。为了获得最佳结果,`pydantic.BaseModels` 应包含参数的描述。 |
llm
|
要使用的语言模型,假定支持 Google Vertex 函数调用 API。
类型: |
prompt
|
要传递给模型的 `BasePromptTemplate`。
类型: |
use_extra_step
|
是否需要额外步骤将输出解析为函数
类型: |
| 返回 | 描述 |
|---|---|
可运行对象
|
一个可运行的序列,在运行时会将给定的函数传递给模型。 |
示例
.. code-block:: python
from typing import Optional
from langchain_google_vertexai import ChatVertexAI, create_structured_runnable
from langchain_core.prompts import ChatPromptTemplate
from pydantic import BaseModel, Field
class RecordPerson(BaseModel):
"""Record some identifying information about a person."""
name: str = Field(..., description="The person's name")
age: int = Field(..., description="The person's age")
fav_food: Optional[str] = Field(None, description="The person's favorite food")
class RecordDog(BaseModel):
"""Record some identifying information about a dog."""
name: str = Field(..., description="The dog's name")
color: str = Field(..., description="The dog's color")
fav_food: Optional[str] = Field(None, description="The dog's favorite food")
llm = ChatVertexAI(model_name="gemini-pro")
prompt = ChatPromptTemplate.from_template("""
You are a world class algorithm for recording entities.
Make calls to the relevant function to record the entities in the following input: {input}
Tip: Make sure to answer in the correct format"""
)
chain = create_structured_runnable([RecordPerson, RecordDog], llm, prompt=prompt)
chain.invoke({"input": "Harry was a chubby brown beagle who loved chicken"})
# -> RecordDog(name="Harry", color="brown", fav_food="chicken")
get_vertex_maas_model ¶
返回一个相应的 Vertex MaaS 实例。
基于模型名称的工厂方法。
create_context_cache ¶
create_context_cache(
model: ChatVertexAI,
messages: list[BaseMessage],
expire_time: datetime | None = None,
time_to_live: timedelta | None = None,
tools: _ToolsType | None = None,
tool_config: _ToolConfigDict | None = None,
) -> str
为某个模型中的内容创建一个缓存。
| 参数 | 描述 |
|---|---|
model
|
ChatVertexAI 模型。必须至少是 gemini-2.5-pro 或 gemini-2.0-flash。
类型: |
messages
|
要缓存的消息列表。
类型: |
expire_time
|
此资源被视为过期的时间戳。expire_time 和 time_to_live 最多只能设置一个。如果两者都未设置,将使用 API 端的默认 TTL(目前为 1 小时)。
类型: |
time_to_live
|
此资源的 TTL(生存时间)。如果提供,过期时间计算为 created_time + TTL。expire_time 和 time_to_live 最多只能设置一个。如果两者都未设置,将使用 API 端的默认 TTL(目前为 1 小时)。
类型: |
工具
|
要绑定到此聊天模型的一系列工具定义。可以是 pydantic 模型、可调用对象或 BaseTool。Pydantic 模型、可调用对象和 BaseTools 将自动转换为其 schema 字典表示形式。
类型: |
tool_config
|
可选。不可变。工具配置。此配置对所有工具共享。
类型: |
| 引发 | 描述 |
|---|---|
ValueError
|
如果模型不支持上下文缓存。 |
| 返回 | 描述 |
|---|---|
str
|
包含已创建缓存标识符的字符串。 |